
Co(w)mpression Challenge

How much of a USACO problem statement is actually important for solving a problem? In this
challenge, you will work in teams to build a program capable of compressing problem statements,
with a goal that the can subsequently be reconstructed well enough to solve the original problem!

1 Program Structure

Your team will write a compression program that reads input from statement.in, a text file con-
taining the problem description of an algorithmic programming task written in English in the style
of a USACO problem. Just as with any other USACO problem, you can expect to find a tex-
tual narrative for the problem followed by sections “INPUT FORMAT”, “OUTPUT FORMAT”,
“SAMPLE INPUT”, and “SAMPLE OUTPUT”, and then possibly an explanation of the sample
input / output. All math will be encoded in plain text, so for example you might see a subscript
written as A 7 and a superscript written as x^2. All mathematical expressions will be delimited
with dollar signs1.

Your program will also accept a single parameter on the command line, an integer c in the range
0 . . . 99, indicating the amount of compression to apply. If the input file statement.in contains
b bytes, your compressed output may have length at most d(100 − c)b/100e bytes. Hence, c = 0
indicates no compression, and c = 99 indicates that the result should be only 1% of the size of the
original! To get the size of a file and then read the entire contents of the file into a buffer, you can
use the following C code:

unsigned char *buffer;

FILE *fp = fopen ("statement.in", "r");

fseek (fp, 0, SEEK_END);

int filesize_in_bytes = ftell(fp);

fseek (fp, 0, SEEK_SET);

buffer = (unsigned char *)malloc (filesize_in_bytes);

fread (buffer, filesize_in_bytes, 1, fp);

fclose (fp);

As output, your program should write a file statement.out containing the result of compressing
the input file. The length of statement.out in bytes must satisfy the length constraint above or
your program will be disqualified.

1This is just like using LaTex, if you are familiar with this method of markup for mathematics. However, problem
statements won’t include LaTex commands like \leq or \frac.

1



Co(w)mpression Challenge

2 Due Date

Please upload your final program to your individual shared Dropbox folder by no later than Thurs-
day May 29 at 2pm EST. Please have only one team member upload code to their shared Dropbox
folder, but include in a comment in the code who are the members of the team.

3 Reconstruction / Competition

At the end of the week (on Saturday afternoon), campers will compete in a fun challenge contest
where you will be given problem statements that have been compressed using your code to various
levels. As such, you may want to collaborate with your partner in advance to also write tools
that support decompression of your compressed problem statements, making it easy to recover as
much information as possible. During this contest, you will be allowed to communicate with your
teammate.

2


