From 9a82dd97daf6b899be8c8aa1d0f311f86b82d8e7 Mon Sep 17 00:00:00 2001 From: Ta180m Date: Wed, 29 Apr 2020 19:09:32 -0500 Subject: Hopefully fixed everything --- solver2.py | 61 ++++++++++++++++++++++++++++++++----------------------------- 1 file changed, 32 insertions(+), 29 deletions(-) (limited to 'solver2.py') diff --git a/solver2.py b/solver2.py index 906673c..a90dfe1 100644 --- a/solver2.py +++ b/solver2.py @@ -1,3 +1,4 @@ +#!/usr/bin/python3 from datetime import datetime, timedelta import matplotlib.pyplot as plt @@ -20,17 +21,19 @@ parser.add_argument('--end', '-e', dest = 'end', default = None, help = 'the dat parser.add_argument('--incubation', '-i', dest = 'incubation_period', default = None, help = 'the incubation period of the disease (only applicable if using SIRE model; ignored otherwise); none by default') parser.add_argument('--predict', '-p', dest = 'prediction_range', default = None, help = 'the number of days to predict the course of the disease (defaults to None, meaning the model will not predict beyond the given data)') parser.add_argument('--country', '-c', dest = 'country', default = 'US', help = 'the country that is being modeled (defaults to US)') -parser.add_argument('--population', '-P', dest = 'population', default = '10000', help = 'the population of the model (defaults to 10000)') +parser.add_argument('--popcountry', '-pc', dest = 'popcountry', default = '3328200000', help = 'the population of the country (defaults to US population)') +parser.add_argument('--popmodel', '-pm', dest = 'popmodel', default = '10000', help = 'the population of the model (defaults to 10000)') +parser.add_argument('--initial', '-I', dest = 'initial', default = '1', help = 'initial infected people (defaults to 1') args = parser.parse_args() -S_0 = (int(args.population) - 1) / int(args.population) -I_0 = 1 / int(args.population) +# Running a model for a million population is quite hard, so here we've reduced the population and modified the actual stats to match +correction_factor = int(args.popmodel) / int(args.popcountry) + +S_0 = (int(args.popcountry) - int(args.initial)) / int(args.popcountry) +I_0 = int(args.initial) / int(args.popcountry) R_0 = 0 E_0 = 0 -# Running a model for a million population is quite hard, so here we've reduced the population and modified the actual stats to match -correction_factor = int(args.population) / 3270000 if args.country == 'US' else int(args.population) / 63710000 if args.country == 'Hong_Kong' else 1 - class Learner(object): def __init__(self, country): self.country = country @@ -155,9 +158,9 @@ class Learner(object): beta, gamma = optimal.x print(f'Beta: {beta}, Gamma: {gamma}, R0: {beta/gamma}') new_index, extended_actual, prediction = self.predict(confirmed_data, beta = beta, gamma = gamma) - print(f'Predicted I: {prediction.y[1][-1] * int(args.population)}, Actual I: {extended_actual[-1] * correction_factor}') + print(f'Predicted I: {prediction.y[1][-1] * int(args.popmodel)}, Actual I: {extended_actual[-1] * correction_factor}') df = compose_df(prediction, extended_actual, correction_factor, new_index) - with open(f'out/{args.disease}-data.csv', 'w+') as file: + with open(f'out/{args.disease}-{args.mode}-data.csv', 'w+') as file: file.write(f'Beta: {beta}\nGamma: {gamma}\nR0: {beta/gamma}') elif args.mode == 'SIR': optimal = minimize( @@ -170,9 +173,9 @@ class Learner(object): beta, gamma = optimal.x print(f'Beta: {beta}, Gamma: {gamma}, R0: {beta/gamma}') new_index, extended_actual, prediction = self.predict(confirmed_data, beta = beta, gamma = gamma) - print(f'Predicted I: {prediction.y[1][-1] * int(args.population)}, Actual I: {extended_actual[-1] * correction_factor}') + print(f'Predicted I: {prediction.y[1][-1] * int(args.popmodel)}, Actual I: {extended_actual[-1] * correction_factor}') df = compose_df(prediction, extended_actual, correction_factor, new_index) - with open(f'out/{args.disease}-data.csv', 'w+') as file: + with open(f'out/{args.disease}-{args.mode}-data.csv', 'w+') as file: file.write(f'Beta: {beta}\nGamma: {gamma}\nR0: {beta/gamma}') elif args.mode == 'ESIR': optimal = minimize( @@ -185,9 +188,9 @@ class Learner(object): beta, gamma, mu = optimal.x print(f'Beta: {beta}, Gamma: {gamma}, Mu: {mu} R0: {beta/(gamma + mu)}') new_index, extended_actual, prediction = self.predict(confirmed_data, beta = beta, gamma = gamma, mu = mu) - print(f'Predicted I: {prediction.y[1][-1] * int(args.population)}, Actual I: {extended_actual[-1] * correction_factor}') + print(f'Predicted I: {prediction.y[1][-1] * int(args.popmodel)}, Actual I: {extended_actual[-1] * correction_factor}') df = compose_df(prediction, extended_actual, correction_factor, new_index) - with open(f'out/{args.disease}-data.csv', 'w+') as file: + with open(f'out/{args.disease}-{args.mode}-data.csv', 'w+') as file: file.write(f'Beta: {beta}\nGamma: {gamma}\nMu: {mu}\nR0: {beta/(gamma + mu)}') elif args.mode == 'SEIR': exposed_data = self.load_exposed(self.country) @@ -202,15 +205,15 @@ class Learner(object): beta, gamma, mu, sigma = optimal.x print(f'Beta: {beta}, Gamma: {gamma}, Mu: {mu}, Sigma: {sigma} R0: {(beta * sigma)/((mu + gamma) * (mu + sigma))}') new_index, extended_actual, prediction = self.predict(confirmed_data, beta = beta, gamma = gamma, mu = mu) - print(f'Predicted I: {prediction.y[1][-1] * int(args.population)}, Actual I: {extended_actual[-1] * correction_factor}') + print(f'Predicted I: {prediction.y[1][-1] * int(args.popmodel)}, Actual I: {extended_actual[-1] * correction_factor}') df = compose_df(prediction, extended_actual, correction_factor, new_index) - with open(f'out/{args.disease}-data.csv', 'w+') as file: + with open(f'out/{args.disease}-{args.mode}-data.csv', 'w+') as file: file.write(f'Beta: {beta}\nGamma: {gamma}\nMu: {mu}\nSigma: {sigma}\nR0: {(beta * sigma)/((mu + gamma) * (mu + sigma))}') fig, ax = plt.subplots(figsize=(15, 10)) ax.set_title(f'{args.disease} cases over time ({args.mode} Model)') df.plot(ax=ax) - fig.savefig(f"{args.out if args.out != None else args.disease}.png") - df.to_csv(f'out/{args.disease}-prediction.csv') + fig.savefig(f"{args.out if args.out != None else args.disease}-{args.mode}.png") + df.to_csv(f'out/{args.disease}-{args.mode}-prediction.csv') def filter_zeroes(arr): out = np.array(arr) @@ -226,13 +229,13 @@ def compose_df(prediction, actual, correction_factor, index): if data == 'Actual': df_dict['Actual'] = filter_zeroes(actual * correction_factor) elif data == 'S': - df_dict['S'] = prediction.y[0] * int(args.population) + df_dict['S'] = prediction.y[0] * int(args.popmodel) elif data == 'I': - df_dict['I'] = prediction.y[1] * int(args.population) + df_dict['I'] = prediction.y[1] * int(args.popmodel) elif data == 'R': - df_dict['R'] = prediction.y[2] * int(args.population) + df_dict['R'] = prediction.y[2] * int(args.popmodel) elif data == 'E': - df_dict['E'] = prediction.y[3] * int(args.population) + df_dict['E'] = prediction.y[3] * int(args.popmodel) return pd.DataFrame(df_dict, index=index) @@ -247,8 +250,8 @@ def loss_linear(point, confirmed, recovered): R = y[2] return [-beta * S, beta * S - gamma * I, gamma * I] solution = solve_ivp(model, [0, size], [S_0,I_0,R_0], t_eval=np.arange(0, size, 1), vectorized=True) - sol_inf = np.sqrt(np.mean((solution.y[1] - (confirmed.values.flatten() * correction_factor/int(args.population)))**2)) - sol_rec = np.sqrt(np.mean((solution.y[2] - (recovered.values * correction_factor/int(args.population)))**2)) + sol_inf = np.sqrt(np.mean((solution.y[1] - (confirmed.values.flatten() * correction_factor/int(args.popmodel)))**2)) + sol_rec = np.sqrt(np.mean((solution.y[2] - (recovered.values * correction_factor/int(args.popmodel)))**2)) return sol_inf * 0.5 + sol_rec * 0.5 def loss_sir(point, confirmed, recovered): @@ -260,8 +263,8 @@ def loss_sir(point, confirmed, recovered): R = y[2] return [-beta * S * I, beta * S * I - gamma * I, gamma * I] solution = solve_ivp(model, [0, size], [S_0,I_0,R_0], t_eval=np.arange(0, size, 1), vectorized=True) - sol_inf = np.sqrt(np.mean((solution.y[1] - (confirmed.values.flatten() * correction_factor/int(args.population)))**2)) - sol_rec = np.sqrt(np.mean((solution.y[2] - (recovered.values * correction_factor/int(args.population)))**2)) + sol_inf = np.sqrt(np.mean((solution.y[1] - (confirmed.values.flatten() * correction_factor/int(args.popmodel)))**2)) + sol_rec = np.sqrt(np.mean((solution.y[2] - (recovered.values * correction_factor/int(args.popmodel)))**2)) return sol_inf * 0.5 + sol_rec * 0.5 def loss_esir(point, confirmed, recovered): @@ -273,8 +276,8 @@ def loss_esir(point, confirmed, recovered): R = y[2] return [mu - beta * S * I - mu * S, beta * S * I - gamma * I - mu * I, gamma * I - mu * R] solution = solve_ivp(model, [0, size], [S_0,I_0,R_0], t_eval=np.arange(0, size, 1), vectorized=True) - sol_inf = np.sqrt(np.mean((solution.y[1] - (confirmed.values.flatten() * correction_factor/int(args.population)))**2)) - sol_rec = np.sqrt(np.mean((solution.y[2] - (recovered.values * correction_factor/int(args.population)))**2)) + sol_inf = np.sqrt(np.mean((solution.y[1] - (confirmed.values.flatten() * correction_factor/int(args.popmodel)))**2)) + sol_rec = np.sqrt(np.mean((solution.y[2] - (recovered.values * correction_factor/int(args.popmodel)))**2)) return sol_inf * 0.5 + sol_rec * 0.5 def loss_seir(point, confirmed, recovered, exposed): @@ -287,9 +290,9 @@ def loss_seir(point, confirmed, recovered, exposed): E = y[3] return [mu - beta * S * I - mu * S, beta * S * I - sigma * E - mu * E, sigma * E * I - gamma * I - mu * I, gamma * I - mu * R] solution = solve_ivp(model, [0, size], [S_0,E_0,I_0,R_0], t_eval=np.arange(0, size, 1), vectorized=True) - sol_inf = np.sqrt(np.mean((solution.y[1] - (confirmed.values.flatten() * correction_factor/int(args.population)))**2)) - sol_rec = np.sqrt(np.mean((solution.y[2] - (recovered.values * correction_factor/int(args.population)))**2)) - sol_exp = np.sqrt(np.mean((solution.y[3] - (exposed.values * correction_factor/int(args.population)))**2)) + sol_inf = np.sqrt(np.mean((solution.y[1] - (confirmed.values.flatten() * correction_factor/int(args.popmodel)))**2)) + sol_rec = np.sqrt(np.mean((solution.y[2] - (recovered.values * correction_factor/int(args.popmodel)))**2)) + sol_exp = np.sqrt(np.mean((solution.y[3] - (exposed.values * correction_factor/int(args.popmodel)))**2)) return sol_inf/3 + sol_rec/3 + sol_exp/3 my_learner = Learner(args.country) -- cgit v1.2.3-70-g09d2