The Ninth Grade Math Competition Class Decimals Anthony Wang 1. Convert repeating decimal $0.\overline{3123}$ to fraction. **2.** Compute $\frac{4!+3!}{3!+2!}$. Express your answer as a decimal to the nearest hundredth. | 3. | • What is the 4037^{th} digit following the decimal point in the expansion of $\frac{1}{111}$? | | | | | |----|---|--|--|--|--| ## **4.** Evaluate the infinite geometric series $$\frac{7^0}{100} + \frac{7^1}{100^2} + \frac{7^2}{100^3} + \cdots$$ as a fraction and find the first 6 digits in its decimal expansion. | 5. Let S be the set of real numbers that can be represented as repeating decimals of the form 0 where a,b,c are distinct digits. Find the sum of the elements of S . | \overline{abc} , | |--|--------------------| 6. | The rational number r is the distinct digits, i.e., $r = 0.\overline{AB}$. | largest number less
Written as a reduced | than 1 whose base-
l fraction, $r = \frac{p}{q}$, find | 7 expansion consists of two $1 p + q$. | |----|---|---|--|---| **7.** Express $0.72\overline{45}$ as a common fraction. | 8. Let p be a prime number other than 2 or 5. What is the maximum possible repeating block of digits in $\frac{1}{p}$? | e number of digits in the | |--|---------------------------| |