The Ninth Grade Math Competition Class

Congruent, Similar and Right Triangles Anthony Wang

1. CD is the altitude from right angle $\angle ACB$ of right triangle ABC, show that $CD^2 = AD.BD$ and $AC^2 = AD.AB$.

2. If $\triangle ABC \sim \triangle XYZ$, $\frac{AB}{XY} = 4$, and [ABC] = 64, find [XYZ].

3. Suppose $\angle ACQ = \angle QCB$, $AQ \perp CQ$, P is the midpoint of AB, show that $PQ \parallel BC$.

4. PQ = PR, $ZX \parallel QY$, X is on PR, Z is on the extended line of RQ, $QY \perp PR$, and PQ is extended to W such that $WZ \perp PW$, show that $\triangle QWZ \sim \triangle RXZ$, and YQ = ZX - ZW.

5. PA and BQ bisect angles $\angle RPQ$ and $\angle RQP$. Given $RX \perp PA$, $RY \perp BQ$, show $XY \parallel PQ$.

6. Show that if $AB \parallel CD \parallel EF$, then $\frac{1}{x} + \frac{1}{y} = \frac{1}{z}$ in the diagram.

7. TAPZ has $TZ \parallel AP \parallel ER$, and R, E are midpoints of AT and PZ respectively, TP and AZ intersect at point O. If AP = 64, TZ = 28, AZ = 46, find OI.

8. AB is divided at C such that AC = 3CB. Circles are drawn with AC, CB as diameters and a common tangent to these circles meets AB extended at D. Show that BD equals the radius of the smaller circle.

9.	Segments AD and BE are medians of right triangle ABC and AB is its hypotenuse. If a right triangle is constructed with legs AD and BE , what will be the length of its hypotenuse in terms of AB ?

10. Let ABC be an equilateral triangle and points F, Q, N satisfy AF = QB = NC = 2AB/3. Prove that $\angle AFQ, \angle NQB, \angle FNC$ are all 90° and FQN is an equilateral triangle.

11.	The area of side. Prove t	a a given triangle	gle is equal to the is right angled.	ne product of a	nn altitude and t	he median towar	d the same
				11			

12. A 3.4	right-angled trian $4C$. Let D, E divi	gle ABC is given de the side BC in Ω	in which F is the equal segments.	midpoint of the hyperove $\triangle DFE$ is	ypotenuse AB and BC = sosceles and right angled

13. Let M be the midpoint of side AB of equilateral triangle ABC , let N, S, K divide BC into four equal segments. P is midpoint of CM , show that $\angle MNB = \angle KPN = 90^{\circ}$.