The Ninth Grade Math Competition Class
Divisors
Anthony Wang

1. Find the product of the positive divisors of 2400 that are multiples of 6.
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2. Find the product of the divisors of 3200 that are perfect squares.
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3. A proper divi f number d of the number that i tth mb itself. What is the

smallest positive integer that is 1 th um o f its positive proper
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5. How many of positive divisors of 3200 are not multiples of any perfect square greater than 1?
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6. How many positive integers have exactly three proper divisors, each of which is less than 50?
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7. Jan is thinking of a positive integer. Her integer has exactly 16 positive divisors, two of which are 12
and 15. What is Jan’s number?
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ctly 12 divisors?

8. What is the sum of all positive integers less than 100 that have exa



9. Dentoe p;, be the k' prime number. Show that p;p; - - - p, + 1 cannot be the perfect square of an

integer. 2
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10. Prove that it is impossible for three consecutive squares to sum to another perfect squares.
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11. A positive integer n is nice if there is a positiv t g m with exactly four positive divisors (in-
clu d ng 1 nd m) su hth t the sum o fth fou d equal to n. How many numbers in the set

010, 2011, 2012, - 2019}

(B) 2 (C) 3 (D) 4 (E) 5.
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