The Ninth Grade Math Competition Class Factorials Anthony Wang

1. Find the largest integer value of n for which 8^n evenly divides 100!.

2. Find the prime factorization of 10!.

3. What is the product of the positive divisors of 7!.					

4. How many positive cubes divide 3!5!7!.						

5. For how many positive integers n less than or equal to 24 is $n!$ evenly divible by $1+2+\cdots+n$?

6.	6. In how many zeros does the decimal expan	nsion of $100^{100} - 100!$ end?	

7	. Let P be the divisible by	ne product of $y 3^k$.	the first 100 j	positive odd i	ntegers. Find	the largest inte	ger k such tha	t P is
	divisione by	y 3 .						