{ "cells": [ { "cell_type": "code", "execution_count": 4, "id": "8ddb479e-9d7e-4392-8fc0-fd1c66a07a2b", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [] }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertForMaskedLM: ['bert.pooler.dense.bias', 'bert.pooler.dense.weight', 'cls.seq_relationship.bias', 'cls.seq_relationship.weight']\n", "- This IS expected if you are initializing BertForMaskedLM from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", "- This IS NOT expected if you are initializing BertForMaskedLM from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "torch.Size([1, 512])\n" ] } ], "source": [ "import torch\n", "import transformers\n", "transformers.set_seed(42)\n", "device = \"cuda\"\n", "# import sys\n", "\n", "# for key in list(sys.modules):\n", "# if key.startswith(\"transformers.\"):\n", "# sys.modules.pop(key)\n", "\n", "from transformers import AutoModelForMaskedLM\n", "model = AutoModelForMaskedLM.from_pretrained(\"bert-base-uncased\", torch_dtype=torch.float16, attn_implementation=\"sdpa\").to(device)\n", "\n", "from transformers import AutoTokenizer\n", "tokenizer = AutoTokenizer.from_pretrained(\"bert-base-uncased\")\n", "\n", "model.config.alek_says_ltr = True\n", "model.config.alek_says_rtl = False\n", "from datasets import load_dataset\n", "\n", "ds = load_dataset(\"Salesforce/wikitext\", \"wikitext-103-v1\")\n", "train_ds = ds[\"train\"]\n", "inputs = tokenizer(train_ds[10][\"text\"], return_tensors=\"pt\", padding='max_length', truncation=True)\n", "\n", "print(inputs[\"input_ids\"].size())" ] }, { "cell_type": "code", "execution_count": 5, "id": "30472f6c-31d6-4768-8dca-d3535be28501", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [] }, "outputs": [], "source": [ "output = model(**{k: v.to(device) for k, v in inputs.items()})" ] }, { "cell_type": "code", "execution_count": 6, "id": "ac46bf41-8cd3-4190-aa4b-6142d6d4d986", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([[[ -7.1094, -7.1445, -7.2148, ..., -6.6484, -7.0703, -3.6758],\n", " [-14.2969, -14.2656, -14.3828, ..., -11.9766, -11.3281, -9.4922],\n", " [-10.7344, -10.6250, -10.7266, ..., -8.6641, -8.2188, -5.0859],\n", " ...,\n", " [ -3.4277, -3.5664, -3.9434, ..., -2.0000, -4.4727, -3.7148],\n", " [ -3.7227, -3.8770, -4.2383, ..., -2.1367, -4.5977, -3.9336],\n", " [ -4.2070, -4.3672, -4.7578, ..., -2.4941, -4.7734, -4.7227]]],\n", " device='cuda:0', dtype=torch.float16, grad_fn=)" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "output.logits" ] }, { "cell_type": "code", "execution_count": 3, "id": "baa757ff-3ba2-4a72-b819-a2283b729c18", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([[[-6.3281, -6.3555, -6.4531, ..., -5.5234, -4.1797, -5.7891],\n", " [-6.7891, -6.6914, -6.7812, ..., -6.1680, -5.1094, -5.5273],\n", " [-7.1641, -7.1055, -7.0625, ..., -6.2383, -5.3711, -5.5273],\n", " ...,\n", " [ 9.4844, 8.9219, 9.2422, ..., 7.6133, 7.2578, 9.9062],\n", " [10.3672, 9.8516, 10.1797, ..., 8.5547, 8.0781, 10.5938],\n", " [ 8.3828, 8.0781, 8.1641, ..., 7.2422, 6.7734, 7.9961]]],\n", " device='cuda:0', dtype=torch.float16, grad_fn=)" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "output.logits" ] }, { "cell_type": "code", "execution_count": 3, "id": "a33632fb-ad41-49e3-acee-91d1dda974b8", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [] }, "outputs": [], "source": [ "# output1 = model(**{k: v.to(device) for k, v in inputs.items()})\n", "# print(output1.logits)\n", "# output2 = model(**{k: v.to(device) for k, v in inputs.items()}, encoder_attention_mask=torch.zeros(1, 512, 512))\n", "# print(output2.logits)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.7" } }, "nbformat": 4, "nbformat_minor": 5 }