/* Variational Auto-Encoder on MNIST. The implementation is based on: https://github.com/pytorch/examples/blob/master/vae/main.py The 4 following dataset files can be downloaded from http://yann.lecun.com/exdb/mnist/ These files should be extracted in the 'data' directory. train-images-idx3-ubyte.gz train-labels-idx1-ubyte.gz t10k-images-idx3-ubyte.gz t10k-labels-idx1-ubyte.gz */ use anyhow::Result; use tch::{nn, nn::Module, nn::OptimizerConfig, Kind, Reduction, Tensor}; struct VAE { fc1: nn::Linear, fc21: nn::Linear, fc22: nn::Linear, fc3: nn::Linear, fc4: nn::Linear, } impl VAE { fn new(vs: &nn::Path) -> Self { VAE { fc1: nn::linear(vs / "fc1", 784, 400, Default::default()), fc21: nn::linear(vs / "fc21", 400, 20, Default::default()), fc22: nn::linear(vs / "fc22", 400, 20, Default::default()), fc3: nn::linear(vs / "fc3", 20, 400, Default::default()), fc4: nn::linear(vs / "fc4", 400, 784, Default::default()), } } fn encode(&self, xs: &Tensor) -> (Tensor, Tensor) { let h1 = xs.apply(&self.fc1).relu(); (self.fc21.forward(&h1), self.fc22.forward(&h1)) } fn decode(&self, zs: &Tensor) -> Tensor { zs.apply(&self.fc3).relu().apply(&self.fc4).sigmoid() } fn forward(&self, xs: &Tensor) -> (Tensor, Tensor, Tensor) { let (mu, logvar) = self.encode(&xs.view([-1, 784])); let std = (&logvar * 0.5).exp(); let eps = std.randn_like(); (self.decode(&(&mu + eps * std)), mu, logvar) } } // Reconstruction + KL divergence losses summed over all elements and batch dimension. fn loss(recon_x: &Tensor, x: &Tensor, mu: &Tensor, logvar: &Tensor) -> Tensor { let bce = recon_x.binary_cross_entropy::(&x.view([-1, 784]), None, Reduction::Sum); // See Appendix B from VAE paper: // Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014 // https://arxiv.org/abs/1312.6114 // 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2) let kld = -0.5 * (1i64 + logvar - mu.pow_tensor_scalar(2) - logvar.exp()).sum(Kind::Float); bce + kld } // Generate a 2D matrix of images from a tensor with multiple images. fn image_matrix(imgs: &Tensor, sz: i64) -> Result { let imgs = (imgs * 256.).clamp(0., 255.).to_kind(Kind::Uint8); let mut ys: Vec = vec![]; for i in 0..sz { ys.push(Tensor::cat(&(0..sz).map(|j| imgs.narrow(0, 4 * i + j, 1)).collect::>(), 2)) } Ok(Tensor::cat(&ys, 3).squeeze_dim(0)) } pub fn main() -> Result<()> { let device = tch::Device::cuda_if_available(); let m = tch::vision::mnist::load_dir("data")?; let vs = nn::VarStore::new(device); let vae = VAE::new(&vs.root()); let mut opt = nn::Adam::default().build(&vs, 1e-3)?; for epoch in 1..21 { let mut train_loss = 0f64; let mut samples = 0f64; for (bimages, _) in m.train_iter(128).shuffle().to_device(vs.device()) { let (recon_batch, mu, logvar) = vae.forward(&bimages); let loss = loss(&recon_batch, &bimages, &mu, &logvar); opt.backward_step(&loss); train_loss += f64::from(&loss); samples += bimages.size()[0] as f64; } println!("Epoch: {}, loss: {}", epoch, train_loss / samples); let s = Tensor::randn(&[64, 20], tch::kind::FLOAT_CPU).to(device); let s = vae.decode(&s).to(tch::Device::Cpu).view([64, 1, 28, 28]); tch::vision::image::save(&image_matrix(&s, 8)?, format!("s_{}.png", epoch))? } Ok(()) }