6.7960 Project Proposal: Investigating Off-Distribution
Generalization of Transformers

Alek Westover, Anthony Wang, Kevin Zhao

In this project, we hope to further our understanding of when
off-distribution generalization happens. Paul Christiano
proposed an experiment here about shortest paths in a graph
to investigate this; our project is essentially to implement
Christiano’s proposed experiment. To the best of our
knowledge, no one has done this yet.

Motivation

It is generally desirable for LLMs to output true statements.
One current approach for ensuring this is to have a human in
the loop rewarding the model for true outputs (e.g. RLHF). One
drawback of this approach is that humans can be poor judges
of truthfulness. Humans enjoy many cognitive biases and
might employ superficial heuristics when judging truthfulness.
A further challenge is that as LLMs become more capable,
there might not even exist experts that are good judges of
whether the models outputs, such as difficult mathematical
proofs, are truthful.

One approach to solving this problem is to reward an LLM for
truthful behavior on simple inputs, and then hope that the
LLM generalizes its truthful behavior for more complex inputs
where humans cannot provide helpful labels. Deep learning
models often perform remarkable feats of off-distribution
generalization - for instance, a model trained to transform
hand drawn cats into images of cats might be able to handle a
“cat” with three eyes in an intuitive way. We might hope that
generalizing truthfully is simple, thus promoted by “Occam’s
Razor”, and aim to investigate that with this project.

Task

We will use a synthetic task to test our hypothesis that models
will generalize truthfully off-distribution. The synthetic task is
computing the distance between various vertices in an input
graph. Our experiment will have three parts:

1. Pre-train a transformer to predict the distance between
two fixed vertices s, t on graphs with n € [8,32)
vertices.

2. Fine-tune a transformer to predict the distances
between s, t' for any t' which is on the shortest path
from s to ¢, but only do fine-tuning on graphs with n €
[8,16) vertices.

3. Test whether the transformer can accurately predict
the distances between s, t' for any t' on the shortest
path from s to t for graphs with n € [16, 32) vertices.

Data

We will represent an n vertex, m edge unweighted, undirected
graph as sequence of the endpoints of the m edges, so
lay, by, a9, by, ..., b, ] represents a graph with the edges {(a;,

by} for 1 = i = m. We will pad all sequences to be the same

length using the padding token 0.

The full input to our model will additionally add the target
vertex after the padding tokens. The model is tasked with
predicting the length of the shortest path between vertex 1 and
the target vertex t. If no such path exists, we define the length
to be n + 1 which represents infinity. For example, an input-
output pair for our model could look like [1, 3, 3,2,0,0,0, 0, 2]
and 2 respectively.

We have three separate datasets.

* Pre-train data: For each n € [8,32), we will generate
several graphs on n vertices. We generate these graphs
by inserting 2n random edges into the graph. We
always set the target vertex to be 2 here.

* Fine-tune data: For each n € [8,16), we will generate
several graphs on n vertices. We generate these graphs
by inserting 2n random edges into the graph. We select
the target vertex to be a random vertex on the shortest
path from 1 to 2.

* Generalization testing data: The same as the fine-
tune data, except we sample n € [16, 32) instead.

As a side note, we are also curious whether the transformer
learns to generalize to different distributions of graphs, such as
denser graphs or graphs with different properties. Time
permitting, we will also investigate this.

Architecture

We plan to use a standard transformer architecture. We will
ensure that the number of layers in our transformer is at least
the diameter of the graph. By doing this, we ensure that there
is an extremely simple circuit — namely BFS — that the
transformer could in theory learn to perform the task. Note
that if the transformer actually learns a simple circuit to
perform this task, then it seems more likely to generalize well.
This is also our intuition for why it should be possible to fine
tune on a small amount of data for finding shortest paths to
other vertices besides 2 — it seems like the model should be
computing these other distances as intermediate values in its
computation to find the distance to vertex 2.

Positional Encodings

In order to facilitate performing this task with limited
computational resources, we plan to use custom-made
positional encodings that tell the model extra information
about the structure of the problem, rather than the traditional
sine/cosine positional encodings. Specifically, our positional

encodings are YV Vo Voo Vi Vi Vi 4 4 where each v;isa

random vector so each v, v; pair is nearly orthogonal with high

probability. We will concatenate these with the token
encodings rather than adding them. This should let the model
easily have large attention scores between vertices
corresponding to a single edge.


https://www.alignmentforum.org/posts/BxersHYN2qcFoonwg/experimentally-evaluating-whether-honesty-generalizes?commentId=dsDA2BWpHPdgLvaXX

	6.7960 Project Proposal: Investigating Off-Distribution Generalization of Transformers
	Motivation
	Task
	Data
	Architecture
	Positional Encodings


