import bisect import math import struct import sys # Number of times to sample each second bitrate = 44100 music = [] def process(notes, start, speed=1, gain=1, blend=0): """ Adds a list of notes to the music list """ t = start for note in notes: vol = 1 if len(note) == 4: vol = note[3] start = min(t, t + note[0] / speed) end = max(t, t + note[0] / speed) music.append((start, end + 16 * int(blend), note[1], note[2], vol * gain)) t = end def freq(octave, step): """ Returns the frequency of a note """ return 55 * 2 ** (octave + step / 12 - 1) def tone(f, t): """ Returns the intensity of a tone of frequency f sampled at time t https://dsp.stackexchange.com/questions/46598/mathematical-equation-for-the-sound-wave-that-a-piano-makes https://youtu.be/ogFAHvYatWs?t=254 """ w = 2 * math.pi * f Y = 0.6 * math.sin(w * t) * math.exp(-0.001 * w * t) Y += 0.2 * math.sin(2 * w * t) * math.exp(-0.001 * w * t) Y += 0.05 * math.sin(3 * w * t) * math.exp(-0.001 * w * t) Y += Y * Y * Y Y *= 1 + 16 * t * math.exp(-6 * t) return Y def at(t): """ Returns the total intensity of music sampled at time t This is actually pretty efficient ngl Because people usually don't have that many overlapping notes """ i = bisect.bisect(music, (t, 2**31)) ret = 0 for j in range(max(i - 32, 0), i): m = music[j] if m[1] > t: ret += m[4] * tone(freq(m[2], m[3]), t - m[0]) return int(2**28 * ret) def play(start, end): """ Print music from the start time to end time encoded in s32 to standard output """ music.sort() for i in range(start * bitrate, end * bitrate): sys.stdout.buffer.write(struct.pack("i", at(i / bitrate)))