aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorKevin Zhao2024-05-11 11:12:31 -0400
committerKevin Zhao2024-05-11 11:12:31 -0400
commit0d8a8409f9aae14b9413c749146bc265bcd21106 (patch)
tree597c0abd1e930992dfea2ae981a0f88458d06e13
parentf2e199949f69d3a7c08939a63f70c7a2514fd29f (diff)
More flexible grid sizes (non-square and not multiple of 80); calibrated vs gtruth diff plot in comments; 90kbps
-rw-r--r--decoder.py53
-rw-r--r--decoding_utils.py131
-rw-r--r--encoder.py12
3 files changed, 84 insertions, 112 deletions
diff --git a/decoder.py b/decoder.py
index e8e548f..b328411 100644
--- a/decoder.py
+++ b/decoder.py
@@ -7,7 +7,6 @@ import torch
from creedsolo import RSCodec
from raptorq import Decoder
-from corner_training.models import QuantizedV2, QuantizedV5
from decoding_utils import localize_corners_wrapper
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
@@ -25,9 +24,7 @@ args = parser.parse_args()
if args.version == 0:
cheight = cwidth = max(args.height // 10, args.width // 10)
elif args.version == 1:
- assert args.height * 3 % 80 == args.width * 3 % 80 == 0
- cheight = int(args.height * 0.15)
- cwidth = int(args.width * 0.15)
+ cheight = cwidth = int(max(args.height, args.width) * 0.16)
else:
raise NotImplementedError
@@ -39,8 +36,6 @@ rs_bytes = frame_bytes - (frame_bytes + 254) // 255 * int(args.level * 255) - 4
rsc = RSCodec(int(args.level * 255))
decoder = Decoder.with_defaults(args.size, rs_bytes)
-input_crop_size = 1024
-
if args.version == 0:
def find_corner(A, f):
cx, cy = A.shape[:2]
@@ -92,25 +87,20 @@ if args.version == 0:
return frame, (wcol, rcol, gcol, bcol)
elif args.version == 1:
- localize_corners = localize_corners_wrapper(args, input_crop_size)
+ localize_corners = localize_corners_wrapper(args)
# ####
-# vid_frames = []
-# # cap = cv2.VideoCapture("/Users/kevinzhao/Downloads/IMG_0994.MOV")
-# cap = cv2.VideoCapture("vid_tiny_v1.mkv")
+# gtruth_frames = []
+# cap = cv2.VideoCapture("vid_mid_v1.mkv")
# data = None
-# start_time = time.time()
# while data is None:
# ret, raw_frame = cap.read()
# if not ret:
# print("End of stream")
# break
-# vid_frames.append(raw_frame)
-# gtruth = cv2.cvtColor(vid_frames[0], cv2.COLOR_BGR2RGB)
+# gtruth_frames.append(cv2.cvtColor(raw_frame, cv2.COLOR_BGR2RGB))
# ####
-
-
if args.input.isdecimal():
args.input = int(args.input)
cap = cv2.VideoCapture(args.input)
@@ -119,7 +109,6 @@ start_time = time.time()
while data is None:
try:
ret, raw_frame = cap.read()
- # raw_frame = cv2.resize(raw_frame, (1024, 1024), interpolation=cv2.INTER_NEAREST) # TODO: remove
if not ret:
print("End of stream")
break
@@ -131,12 +120,13 @@ while data is None:
X, Y = raw_frame.shape[:2]
raw_frame = raw_frame[X // 4: 3 * X // 4, Y // 4: 3 * Y // 4]
elif args.version == 1:
- h, w, _ = raw_frame.shape
- raw_frame = raw_frame[(h - input_crop_size) // 2:-(h - input_crop_size) // 2, # TODO: put back
- (w - input_crop_size) // 2:-(w - input_crop_size) // 2]
+ pass
+ # h, w, _ = raw_frame.shape
+ # raw_frame = raw_frame[(h - input_crop_size) // 2:-(h - input_crop_size) // 2,
+ # (w - input_crop_size) // 2:-(w - input_crop_size) // 2]
- cv2.imshow("", raw_frame)
- cv2.waitKey(1)
+ # cv2.imshow("", raw_frame)
+ # cv2.waitKey(1)
raw_frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2RGB)
frame, (wcol, rcol, gcol, bcol) = localize_corners(raw_frame)
@@ -151,21 +141,30 @@ while data is None:
# Convert to new color space
# calibrated_frame = (np.squeeze(F @ (frame - origin)[..., np.newaxis]) >= 192).astype(np.uint8)
- # calibrated_frame = (np.squeeze(F @ (frame - origin)[..., np.newaxis]) >= 192).astype(np.uint8) * 255
- calibrated_frame = (np.squeeze(F @ (frame - origin)[..., np.newaxis]) >= 150).astype(np.uint8) * 255
+ calibrated_frame = (np.squeeze(F @ (frame - origin)[..., np.newaxis]) >= 128).astype(np.uint8)
+
# fig, axs = plt.subplots(1, 2)
# axs[0].imshow(frame)
- # axs[1].imshow(calibrated_frame)
+ # axs[1].imshow(calibrated_frame * 255)
# plt.show()
-
+ #
+ # closest_ind = None
+ # closest_diff = 1
+ # for i, gtruth_frame in enumerate(gtruth_frames):
+ # diff = (gtruth_frame != calibrated_frame * 255).any(axis=2).mean()
+ # if diff < closest_diff:
+ # closest_ind = i
+ # closest_diff = diff
+ #
+ # gtruth = gtruth_frames[closest_ind]
# fig, axs = plt.subplots(1, 2)
- # correct_mask = np.logical_not((calibrated_frame != gtruth).any(axis=2))
+ # correct_mask = np.logical_not((calibrated_frame * 255 != gtruth).any(axis=2))
# calibrated_frame_copy = calibrated_frame.copy()
# gtruth_copy = gtruth.copy()
# calibrated_frame_copy[correct_mask] = [0, 0, 0]
# gtruth_copy[correct_mask] = [0, 0, 0]
# axs[0].imshow(gtruth_copy)
- # axs[1].imshow(calibrated_frame_copy)
+ # axs[1].imshow(calibrated_frame_copy * 255)
# plt.show()
calibrated_frame = np.packbits(
diff --git a/decoding_utils.py b/decoding_utils.py
index d3bf2d7..5ad74d2 100644
--- a/decoding_utils.py
+++ b/decoding_utils.py
@@ -18,7 +18,7 @@ from corner_training.utils import get_gaussian_filter, get_bounded_slices
torch.backends.quantized.engine = 'qnnpack'
-def localize_corners_wrapper(args, input_crop_size, debug=False):
+def localize_corners_wrapper(args, debug=False):
stage1_model_checkpt_path = "checkpts/QuantizedV2_Stage1_128_9.pt"
stage2_model_checkpt_path = "checkpts/QuantizedV5_Stage2_128_9.pt"
@@ -38,27 +38,24 @@ def localize_corners_wrapper(args, input_crop_size, debug=False):
torch.ao.quantization.convert(stage2_model, inplace=True)
stage2_model.load_state_dict(torch.load(stage2_model_checkpt_path, map_location=torch.device('cpu')))
- stage1_size = 128
- stage2_size = input_crop_size // 16
-
- assert stage1_size & 1 == 0, "Assuming even size when dividing into quadrants"
- assert stage2_size & 1 == 0, "Assuming even size when center cropping"
stage1_model.eval()
stage2_model.eval()
- preprocess_img_stage1 = transforms.Compose([
- transforms.Lambda(lambda img: cv2.resize(img, (stage1_size, stage1_size), interpolation=cv2.INTER_NEAREST)),
+ stage1_size = 128
+ assert stage1_size & 1 == 0, "Assuming even size when dividing into quadrants"
+
+ np_to_fp32_tensor = transforms.Compose([
transforms.ToImage(),
transforms.ToDtype(torch.float32, scale=True),
])
- gaussian_filter = get_gaussian_filter(4, 4) # for stage1 NMS heuristic
-
- preprocess_img_stage2 = transforms.Compose([
- transforms.ToImage(),
- transforms.ToDtype(torch.float32, scale=True),
+ preprocess_img_stage1 = transforms.Compose([
+ transforms.Lambda(lambda img: resize_keep_aspect(img, stage1_size)),
+ np_to_fp32_tensor,
])
+ gaussian_filter = get_gaussian_filter(4, 4) # for stage1 NMS heuristic
+
# Transform cropped corners until they all look like top left corners, as that's what the model is trained on
transforms_by_corner = [
lambda img: img, # identity
@@ -75,9 +72,8 @@ def localize_corners_wrapper(args, input_crop_size, debug=False):
cropped_frame: Square numpy array
"""
orig_h, orig_w, _ = cropped_frame.shape
- assert orig_w == orig_h, "Assuming square img"
- assert orig_w % stage1_size == 0
- upscale_factor = orig_w // stage1_size # for stage 2
+ stage2_size = max(orig_h, orig_w) // 16
+ upscale_factor = min(orig_w, orig_h) / stage1_size # for stage 2
start_time = time.time()
stage1_img = preprocess_img_stage1(cropped_frame)
@@ -93,27 +89,28 @@ def localize_corners_wrapper(args, input_crop_size, debug=False):
if debug:
print(57, time.time() - start_time)
- quad_size = stage1_size // 2
+ quad_h = stage1_img.size(1) // 2 # might miss 1 pixel on edge if odd
+ quad_w = stage1_img.size(2) // 2
corners_by_quad = dict()
for top_half in (0, 1): # TODO: bot/right to remove all 1 minuses
for left_half in (0, 1):
- quad_i_start = quad_size * (1 - top_half)
- quad_j_start = quad_size * (1 - left_half)
+ quad_i_start = quad_h * (1 - top_half)
+ quad_j_start = quad_w * (1 - left_half)
curr_quad_preds = stage1_pred[
- quad_i_start: quad_i_start + quad_size,
- quad_j_start: quad_j_start + quad_size,
+ quad_i_start: quad_i_start + quad_h,
+ quad_j_start: quad_j_start + quad_w,
].clone()
max_locs = []
for i in range(6): # expect 4 points, but get top 6 to be safe
max_ind = torch.argmax(curr_quad_preds).item() # TODO: more efficient like segtree, maybe account for neighbors too
- max_loc = (max_ind // quad_size, max_ind % quad_size)
+ max_loc = (max_ind // quad_w, max_ind % quad_w)
max_locs.append(max_loc)
# TODO: improve, maybe scale Gaussian peak to val of max_loc, probably better to not subtract from a location multiple times
- preds_slice, gaussian_slice = get_bounded_slices((quad_size, quad_size), gaussian_filter.size(),
+ preds_slice, gaussian_slice = get_bounded_slices((quad_h, quad_w), gaussian_filter.size(),
*max_loc)
curr_quad_preds[preds_slice] -= gaussian_filter[gaussian_slice]
@@ -122,7 +119,7 @@ def localize_corners_wrapper(args, input_crop_size, debug=False):
min_cost = 1e9
min_square = None
- for potential_combo in itertools.combinations(max_locs, 4): # TODO: don't repeat symmetrical squares
+ for potential_combo in itertools.combinations(max_locs, 4):
curr_pts, curr_cost = score_combo(potential_combo)
if curr_cost < min_cost:
min_cost = curr_cost
@@ -139,7 +136,7 @@ def localize_corners_wrapper(args, input_crop_size, debug=False):
outer_corners = []
# corner_colors = [] # by center, currently rounding to the pixel in the original image
- origin = (quad_size, quad_size)
+ origin = (quad_h, quad_w)
for quad in range(4): # TODO: consistent (x, y) or (i, j)
outer_corners.append(max((l2_dist(corner, origin), corner) for corner in corners_by_quad[quad])[1])
# corner_colors.append(cropped_frame[int((sum(corner[0] for corner in corners_by_quad[quad]) / 4 * upscale_factor)),
@@ -152,7 +149,7 @@ def localize_corners_wrapper(args, input_crop_size, debug=False):
for left_half in (0, 1):
corner_ind = top_half * 2 + left_half
y, x = outer_corners[corner_ind]
- upscaled_y, upscaled_x = y * upscale_factor, x * upscale_factor
+ upscaled_y, upscaled_x = round(y * upscale_factor), round(x * upscale_factor)
top = max(0, upscaled_y - stage2_size // 2)
bottom = min(orig_h, upscaled_y + stage2_size // 2)
@@ -164,7 +161,7 @@ def localize_corners_wrapper(args, input_crop_size, debug=False):
corner_padding[(1 - top_half) * 2 + 1] = stage2_size - (bottom - top)
corner_padding[(1 - left_half) * 2] = stage2_size - (right - left)
cropped_corner_img = transforms_f.pad( # TODO: don't pad since that should speed up inference
- preprocess_img_stage2(cropped_frame[top:bottom, left:right]),
+ np_to_fp32_tensor(cropped_frame[top:bottom, left:right]),
corner_padding
)
stage2_imgs.append(cropped_corner_img)
@@ -195,8 +192,8 @@ def localize_corners_wrapper(args, input_crop_size, debug=False):
if debug:
print(137, time.time() - start_time)
- orig_pred_pts = [(orig_x * upscale_factor + stage2_pred_x - stage2_size // 2,
- orig_y * upscale_factor + stage2_pred_y - stage2_size // 2)
+ orig_pred_pts = [(round(orig_x * upscale_factor) + stage2_pred_x - stage2_size // 2,
+ round(orig_y * upscale_factor) + stage2_pred_y - stage2_size // 2)
for (orig_y, orig_x), (stage2_pred_x, stage2_pred_y) in zip(outer_corners, stage2_pred_pts)]
if debug:
@@ -206,56 +203,18 @@ def localize_corners_wrapper(args, input_crop_size, debug=False):
# plt.scatter(np.array(orig_pred_pts).T[0], np.array(orig_pred_pts).T[1])
# plt.show()
- cheight = int(args.height * 0.15)
- cwidth = int(args.width * 0.15)
- cch = int(args.height * 0.15) // 4
- ccw = int(args.width * 0.15) // 4
-
- # plt.imshow(cropped_frame)
- # plt.show()
+ corner_size = int(max(args.height, args.width) * 0.16)
+ qtr_corner_size = corner_size // 4
grid_coords = np.float32([
- [ccw, cch],
- [args.width - ccw, cch],
- [ccw, args.height - cch],
- [args.width - ccw, args.height - cch],
+ [qtr_corner_size, qtr_corner_size],
+ [args.width - qtr_corner_size, qtr_corner_size],
+ [qtr_corner_size, args.height - qtr_corner_size],
+ [args.width - qtr_corner_size, args.height - qtr_corner_size],
])
grid_coords -= 1/2
- #
- # grid_coords *= orig_w / args.width
- # torch_frame = transforms_f.perspective(
- # transforms.Compose([
- # # transforms.Lambda(
- # # lambda img: cv2.resize(img, (stage1_size, stage1_size), interpolation=cv2.INTER_NEAREST)),
- # transforms.ToImage(),
- # transforms.ToDtype(torch.float32, scale=True),
- # ])(cropped_frame),
- # orig_pred_pts,
- # grid_coords,
- # )
- #
- # torch_frame = cv2.resize(torch_frame.permute(1, 2, 0).numpy(), (args.width, args.height), interpolation=cv2.INTER_AREA)
- # # torch_frame = cv2.resize(torch_frame.permute(1, 2, 0).numpy(), (args.width, args.height), interpolation=cv2.INTER_NEAREST)
- #
- # # torch_frame = transforms_f.resize(torch_frame, [args.height, args.width]).permute(1, 2, 0).numpy()
- # # torch_frame = torch_frame.permute(1, 2, 0).numpy()
- # cropped_frame = (torch_frame * 255).astype(np.uint8)
- # plt.imshow(cropped_frame)
- #
- # plt.axis("off")
- # plt.show()
-
-
-
- # grid_coords = np.float32([
- # [ccw, cch],
- # [args.width - ccw - 1, cch],
- # [ccw, args.height - cch - 1],
- # [args.width - ccw - 1, args.height - cch - 1],
- # ])
-
M = cv2.getPerspectiveTransform(
np.float32(orig_pred_pts),
grid_coords,
@@ -267,14 +226,14 @@ def localize_corners_wrapper(args, input_crop_size, debug=False):
padding = math.ceil(max(args.height, args.width) / 80) # arbitrary
# guessing wildly on +/- 1s
- white_sq = cropped_frame[cch + padding: cheight - cch - padding,
- ccw + padding: cwidth - ccw - padding]
- red_sq = cropped_frame[cch + padding: cheight - cch - padding,
- args.width - cwidth + ccw + padding: args.width - ccw - padding]
- green_sq = cropped_frame[args.height - cheight + cch + padding: args.height - cch - padding,
- ccw + padding: cwidth - ccw - padding]
- blue_sq = cropped_frame[args.height - cheight + cch + padding: args.height - cch - padding,
- args.width - cwidth + ccw + padding: args.width - ccw - padding]
+ white_sq = cropped_frame[qtr_corner_size + padding: corner_size - qtr_corner_size - padding,
+ qtr_corner_size + padding: corner_size - qtr_corner_size - padding]
+ red_sq = cropped_frame[qtr_corner_size + padding: corner_size - qtr_corner_size - padding,
+ args.width - corner_size + qtr_corner_size + padding: args.width - qtr_corner_size - padding]
+ green_sq = cropped_frame[args.height - corner_size + qtr_corner_size + padding: args.height - qtr_corner_size - padding,
+ qtr_corner_size + padding: corner_size - qtr_corner_size - padding]
+ blue_sq = cropped_frame[args.height - corner_size + qtr_corner_size + padding: args.height - qtr_corner_size - padding,
+ args.width - corner_size + qtr_corner_size + padding: args.width - qtr_corner_size - padding]
corner_colors = [white_sq.mean(axis=(0, 1)), red_sq.mean(axis=(0, 1)),
green_sq.mean(axis=(0, 1)), blue_sq.mean(axis=(0, 1))]
@@ -323,6 +282,16 @@ def score_combo(combo):
return hull, (max(side_lens) - min(side_lens)) / min(side_lens)
+def resize_keep_aspect(img: np.ndarray, min_len: int) -> np.ndarray:
+ h, w, _ = img.shape
+ if h < w:
+ output_size = (round(min_len * w / h), min_len)
+ else:
+ output_size = (min_len, round(min_len * h / w))
+
+ return cv2.resize(img, output_size, interpolation=cv2.INTER_NEAREST)
+
+
# Gift wrapping code, adapted from GeeksForGeeks.
# "This code is contributed by Akarsh Somani, IIIT Kalyani"
class Point:
diff --git a/encoder.py b/encoder.py
index caf9b59..dbeb2f6 100644
--- a/encoder.py
+++ b/encoder.py
@@ -20,10 +20,12 @@ args = parser.parse_args()
if args.version == 0:
cheight = cwidth = max(args.height // 10, args.width // 10)
elif args.version == 1:
- # cell borders are 0.0375% of width/height
- assert args.height * 3 % 80 == args.width * 3 % 80 == 0 # TODO: less strict better ratio
- cheight = int(args.height * 0.15)
- cwidth = int(args.width * 0.15)
+ # # cell borders are 0.0375% of width/height
+ # assert args.height * 3 % 80 == args.width * 3 % 80 == 0 # TODO: less strict better ratio
+ # cheight = int(args.height * 0.15)
+ # cwidth = int(args.width * 0.15)
+
+ cheight = cwidth = int(max(args.height, args.width) * 0.16)
else:
raise NotImplementedError
@@ -74,6 +76,8 @@ def mkframe(packet):
frame = np.unpackbits(frame)
# Pad to be multiple of 3 so we can reshape into RGB channels
frame = np.pad(frame, (0, (3 - len(frame)) % 3))
+ print(frame_size)
+ print(frame.shape)
frame = np.reshape(frame, (frame_size, 3))
frame = np.concatenate(
(