summaryrefslogtreecommitdiff
path: root/mnist.py
diff options
context:
space:
mode:
Diffstat (limited to 'mnist.py')
-rwxr-xr-xmnist.py32
1 files changed, 11 insertions, 21 deletions
diff --git a/mnist.py b/mnist.py
index 95ca6ad..353a661 100755
--- a/mnist.py
+++ b/mnist.py
@@ -7,7 +7,6 @@ from torchvision import datasets
from torchvision.transforms import ToTensor, Lambda, Compose
import matplotlib.pyplot as plt
-
training_data = datasets.MNIST(
root=".data",
train=True,
@@ -22,7 +21,6 @@ test_data = datasets.MNIST(
transform=ToTensor(),
)
-
batch_size = 100
train_loader = DataLoader(training_data, batch_size=batch_size)
@@ -34,18 +32,13 @@ class CNN(nn.Module):
super(CNN, self).__init__()
self.layer1 = nn.Sequential(
- nn.Conv2d(in_channels=1, out_channels=32, kernel_size=3, padding=1),
- nn.BatchNorm2d(32),
- nn.ReLU(),
- nn.MaxPool2d(kernel_size=2, stride=2)
- )
+ nn.Conv2d(in_channels=1, out_channels=32, kernel_size=3,
+ padding=1), nn.BatchNorm2d(32), nn.ReLU(),
+ nn.MaxPool2d(kernel_size=2, stride=2))
self.layer2 = nn.Sequential(
nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3),
- nn.BatchNorm2d(64),
- nn.ReLU(),
- nn.MaxPool2d(2)
- )
- self.fc1 = nn.Linear(in_features=64*6*6, out_features=600)
+ nn.BatchNorm2d(64), nn.ReLU(), nn.MaxPool2d(2))
+ self.fc1 = nn.Linear(in_features=64 * 6 * 6, out_features=600)
self.drop = nn.Dropout2d(0.25)
self.fc2 = nn.Linear(in_features=600, out_features=120)
self.fc3 = nn.Linear(in_features=120, out_features=10)
@@ -61,7 +54,6 @@ class CNN(nn.Module):
return out
-
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model = CNN()
@@ -70,7 +62,6 @@ error = nn.CrossEntropyLoss()
learning_rate = 0.001
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
-
num_epochs = 5
count = 0
@@ -104,28 +95,27 @@ for epoch in range(num_epochs):
images, labels = images.to(device), labels.to(device)
labels_list.append(labels)
-
+
test = Variable(images.view(batch_size, 1, 28, 28))
outputs = model(test)
-
+
predictions = torch.max(outputs, 1)[1].to(device)
predictions_list.append(predictions)
correct += (predictions == labels).sum()
-
+
total += len(labels)
-
+
accuracy = correct * batch_size / total
loss_list.append(loss.data)
iteration_list.append(count)
accuracy_list.append(accuracy)
- print("Iteration: {}, Loss: {}, Accuracy: {}%".format(count, loss.data, accuracy))
-
+ print("Iteration: {}, Loss: {}, Accuracy: {}%".format(
+ count, loss.data, accuracy))
torch.save(model.state_dict(), "model.pth")
print("Saved PyTorch Model State to model.pth")
-
plt.plot(iteration_list, loss_list)
plt.xlabel("No. of Iteration")
plt.ylabel("Loss")