summaryrefslogtreecommitdiff
path: root/src/ss/msr.c
blob: bb4361c3e55882f37776c2f01f0dbede3bab6040 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
#include <glib.h>
#include <cpuid.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "zenmonitor.h"
#include "msr.h"
#include "sysfs.h"

#define MSR_PWR_PRINTF_FORMAT " %8.3f W"
#define MSR_FID_PRINTF_FORMAT " %8.3f GHz"
#define MESUREMENT_TIME 0.1

// AMD PPR  = https://www.amd.com/system/files/TechDocs/54945_PPR_Family_17h_Models_00h-0Fh.pdf
// AMD OSRR = https://developer.amd.com/wp-content/resources/56255_3_03.PDF

static guint cores = 0;
static gdouble energy_unit = 0;
static struct cpudev *cpu_dev_ids;

static gint *msr_files = NULL;

static gulong package_eng_b = 0;
static gulong package_eng_a = 0;
static gulong *core_eng_b = NULL;
static gulong *core_eng_a = NULL;

gfloat package_power;
gfloat package_power_min;
gfloat package_power_max;
gfloat *core_power;
gfloat *core_fid;
gfloat *core_power_min;
gfloat *core_power_max;
gfloat *core_fid_min;
gfloat *core_fid_max;


static gint open_msr(gshort devid) {
    gchar msr_path[20];
    sprintf(msr_path, "/dev/cpu/%d/msr", devid);
    return open(msr_path, O_RDONLY);
}

static gboolean read_msr(gint file, guint index, gulong *data) {
    if (file < 0)
        return FALSE;

    return pread(file, data, sizeof *data, index) == sizeof *data;
}

gdouble get_energy_unit() {
    gulong data;
    // AMD OSRR: page 139 - MSRC001_0299
    if (!read_msr(msr_files[0], 0xC0010299, &data))
        return 0.0;

    return pow(1.0/2.0, (double)((data >> 8) & 0x1F));
}

gulong get_package_energy() {
    gulong data;
    // AMD OSRR: page 139 - MSRC001_029B
    if (!read_msr(msr_files[0], 0xC001029B, &data))
        return 0;

    return data;
}

gulong get_core_energy(gint core) {
    gulong data;
    // AMD OSRR: page 139 - MSRC001_029A
    if (!read_msr(msr_files[core], 0xC001029A, &data))
        return 0;

    return data;
}

gdouble get_core_fid(gint core) {
    gdouble ratio;
    gulong data;

    // By reverse-engineering Ryzen Master, we know that
    //  this undocumented MSR is responsible for returning
    //  the FID and FDID for the core used for calculating the
    //  effective frequency.
    //
    // The FID is returned in bits [8:0]
    // The FDID is returned in bits [14:8]
    if (!read_msr(msr_files[core], 0xC0010293, &data))
        return 0;

    ratio = (gdouble)(data & 0xff) / (gdouble)((data >> 8) & 0x3F);

    // The effective ratio is based on increments of 200 MHz.
    return ratio * 200.0 / 1000.0;
}

gboolean msr_init() {
    guint i;

    if (!check_zen())
        return FALSE;

    cores = get_core_count();
    if (cores == 0)
        return FALSE;

    cpu_dev_ids = get_cpu_dev_ids();
    msr_files = malloc(cores * sizeof (gint));
    for (i = 0; i < cores; i++) {
        msr_files[i] = open_msr(cpu_dev_ids[i].cpuid);
    }

    energy_unit = get_energy_unit();
    if (energy_unit == 0)
        return FALSE;

    core_eng_b = malloc(cores * sizeof (gulong));
    core_eng_a = malloc(cores * sizeof (gulong));
    core_power = malloc(cores * sizeof (gfloat));
    core_fid = malloc(cores * sizeof (gfloat));
    core_power_min = malloc(cores * sizeof (gfloat));
    core_power_max = malloc(cores * sizeof (gfloat));
    core_fid_min = malloc(cores * sizeof (gfloat));
    core_fid_max = malloc(cores * sizeof (gfloat));

    msr_update();
    memcpy(core_power_min, core_power, cores * sizeof (gfloat));
    memcpy(core_power_max, core_power, cores * sizeof (gfloat));
    memcpy(core_fid_min, core_fid, cores * sizeof (gfloat));
    memcpy(core_fid_max, core_fid, cores * sizeof (gfloat));
    package_power_min = package_power;
    package_power_max = package_power;

    return TRUE;
}

void msr_update() {
    guint i;

    package_eng_b = get_package_energy();
    for (i = 0; i < cores; i++) {
        core_eng_b[i] = get_core_energy(i);
    }

    usleep(MESUREMENT_TIME*1000000);

    package_eng_a = get_package_energy();
    for (i = 0; i < cores; i++) {
        core_eng_a[i] = get_core_energy(i);
    }

    if (package_eng_a >= package_eng_b) {
        package_power = (package_eng_a - package_eng_b) * energy_unit / MESUREMENT_TIME;

        if (package_power < package_power_min)
            package_power_min = package_power;
        if (package_power > package_power_max)
            package_power_max = package_power;
    }

    for (i = 0; i < cores; i++) {
        if (core_eng_a[i] >= core_eng_b[i]) {
            core_power[i] = (core_eng_a[i] - core_eng_b[i]) * energy_unit / MESUREMENT_TIME;

            if (core_power[i] < core_power_min[i])
                core_power_min[i] = core_power[i];
            if (core_power[i] > core_power_max[i])
                core_power_max[i] = core_power[i];
        }

        core_fid[i] = get_core_fid(i);

        if (core_fid[i] < core_fid_min[i])
            core_fid_min[i] = core_fid[i];
        if (core_fid[i] > core_fid_max[i])
            core_fid_max[i] = core_fid[i];
    }
}

void msr_clear_minmax() {
    guint i;

    package_power_min = package_power;
    package_power_max = package_power;
    for (i = 0; i < cores; i++) {
        core_power_min[i] = core_power[i];
        core_power_max[i] = core_power[i];
        core_fid_min[i] = core_fid[i];
        core_fid_max[i] = core_fid[i];
    }
}

GSList* msr_get_sensors() {
    GSList *list = NULL;
    SensorInit *data;
    guint i;

    data = sensor_init_new();
    data->label = g_strdup("Package Power");
    data->value = &package_power;
    data->min = &package_power_min;
    data->max = &package_power_max;
    data->printf_format = MSR_PWR_PRINTF_FORMAT;
    list = g_slist_append(list, data);

    for (i = 0; i < cores; i++) {
        data = sensor_init_new();
        data->label = g_strdup_printf("Core %d Effective Frequency", display_coreid ? cpu_dev_ids[i].coreid: i);
        data->value = &(core_fid[i]);
        data->min = &(core_fid_min[i]);
        data->max = &(core_fid_max[i]);
        data->printf_format = MSR_FID_PRINTF_FORMAT;
        list = g_slist_append(list, data);
    }

    for (i = 0; i < cores; i++) {
        data = sensor_init_new();
        data->label = g_strdup_printf("Core %d Power", display_coreid ? cpu_dev_ids[i].coreid: i);
        data->value = &(core_power[i]);
        data->min = &(core_power_min[i]);
        data->max = &(core_power_max[i]);
        data->printf_format = MSR_PWR_PRINTF_FORMAT;
        list = g_slist_append(list, data);
    }

    return list;
}