aboutsummaryrefslogtreecommitdiff
path: root/decoder.py
blob: dccb24e485dc0e068cc41701b99c81cb0006a021 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import argparse
import collections
import sys
import traceback
import cv2
import matplotlib.pyplot as plt
import numpy as np
from creedsolo import RSCodec
from raptorq import Decoder

parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("-i", "--input", help="camera device index or input video file", default=0)
parser.add_argument("-o", "--output", help="output file for decoded data")
parser.add_argument("-x", "--height", help="grid height", default=100, type=int)
parser.add_argument("-y", "--width", help="grid width", default=100, type=int)
parser.add_argument("-f", "--fps", help="frame rate", default=30, type=int)
parser.add_argument("-l", "--level", help="error correction level", default=0.1, type=float)
parser.add_argument("-s", "--size", help="number of bytes to decode", default=2**16, type=int)
args = parser.parse_args()

cheight = cwidth = max(args.height // 10, args.width // 10)
frame_size = args.height * args.width - 4 * cheight * cwidth
frame_xor = np.arange(frame_size // 2, dtype=np.uint8)
rs_size = frame_size // 2 - (frame_size // 2 + 254) // 255 * int(args.level * 255) - 4

rsc = RSCodec(int(args.level * 255))
decoder = Decoder.with_defaults(args.size, rs_size)

if args.input.isdecimal():
    args.input = int(args.input)
cap = cv2.VideoCapture(args.input)
data = None
while data is None:
    try:
        ret, raw_frame = cap.read()
        if not ret:
            print("End of stream")
            sys.exit(1)
        cv2.imshow("", raw_frame)
        cv2.waitKey(33)
        # raw_frame is a uint8 BE CAREFUL
        raw_frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2RGB)

        X, Y = raw_frame.shape[:2]
        cx, cy = X // 4, Y // 4
        scale = min(cx // 5, cy // 5)
        # Resize so smaller dim is 5

        def find_corner(A, f):
            B = cv2.resize(A, (cy // scale, cx // scale), interpolation=cv2.INTER_AREA)
            guess = np.array(np.unravel_index(np.argmax(f(B)), B.shape[:2])) * scale + scale // 2
            mask = cv2.floodFill(A, np.empty(0), tuple(reversed(guess)), 1, 10, 10, cv2.FLOODFILL_MASK_ONLY)[2][
                1:-1, 1:-1
            ].astype(bool)
            return np.average(np.where(mask), axis=1), np.average(A[mask], axis=0).astype(np.float64)

        widx, wcol = find_corner(raw_frame[:cx, :cy], lambda B: (np.std(B, axis=2) < 35) * np.sum(B, axis=2))
        ridx, rcol = find_corner(raw_frame[:cx, Y - cy :], lambda B: B[:, :, 0] - B[:, :, 1] - B[:, :, 2])
        ridx[1] += Y - cy
        gidx, gcol = find_corner(raw_frame[X - cx :, :cy], lambda B: B[:, :, 1] - B[:, :, 2] - B[:, :, 0])
        gidx[0] += X - cx
        bidx, bcol = find_corner(raw_frame[X - cx :, Y - cy :], lambda B: B[:, :, 2] - B[:, :, 0] - B[:, :, 1])
        bidx[0] += X - cx
        bidx[1] += Y - cy

        # Find basis of color space
        origin = (rcol + gcol + bcol - wcol) / 2
        rcol -= origin
        gcol -= origin
        bcol -= origin
        F = 255 * np.linalg.inv(np.stack((rcol, gcol, bcol)).T)

        # Dumb perspective transform
        xv = np.linspace(
            -(cheight / 2 - 1) / (args.height - cheight + 1),
            1 + (cheight / 2 - 1) / (args.height - cheight + 1),
            args.height,
        )
        yv = np.linspace(
            -(cwidth / 2 - 1) / (args.width - cwidth + 1),
            1 + (cwidth / 2 - 1) / (args.width - cwidth + 1),
            args.width,
        )
        xp = (
            np.outer(1 - xv, 1 - yv) * widx[0]
            + np.outer(1 - xv, yv) * ridx[0]
            + np.outer(xv, 1 - yv) * gidx[0]
            + np.outer(xv, yv) * bidx[0]
        )
        yp = (
            np.outer(1 - xv, 1 - yv) * widx[1]
            + np.outer(1 - xv, yv) * ridx[1]
            + np.outer(xv, 1 - yv) * gidx[1]
            + np.outer(xv, yv) * bidx[1]
        )

        # plt.scatter(widx[1], widx[0])
        # plt.scatter(ridx[1], ridx[0])
        # plt.scatter(gidx[1], gidx[0])
        # plt.scatter(bidx[1], bidx[0])
        # plt.scatter(yp, xp)
        # plt.imshow(raw_frame.astype(np.uint8))
        # plt.show()

        frame = raw_frame[
            np.clip(np.round(xp).astype(np.int64), 0, X - 1), np.clip(np.round(yp).astype(np.int64), 0, Y - 1), :
        ]
        frame = np.clip(np.squeeze(F @ (frame - origin)[..., np.newaxis]), 0, 255).astype(np.uint8)
        frame = (frame[:, :, 0] >> 7) + (frame[:, :, 1] >> 5 & 0b0110) + (frame[:, :, 2] >> 4 & 0b1000)
        frame = np.concatenate(
            (
                frame[:cheight, cwidth : args.width - cwidth].flatten(),
                frame[cheight : args.height - cheight].flatten(),
                frame[args.height - cheight :, cwidth : args.width - cwidth].flatten(),
            )
        )
        frame = ((frame[::2] << 4) + frame[1::2]) ^ frame_xor
        frame = np.pad(frame, (0, (len(frame) + 254) // 255 * 255 - len(frame)))
        frame = np.ravel(frame.reshape(255, len(frame) // 255), "F")[: frame_size // 2]

        data = decoder.decode(bytes(rsc.decode(frame)[0]))
        print("Decoded frame")
    except KeyboardInterrupt:
        sys.exit()
    except:
        traceback.print_exc()
with open(args.output, "wb") as f:
    f.write(data)
cap.release()