1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
|
import argparse
import sys
import traceback
import cv2
import matplotlib.pyplot as plt
import numpy as np
from creedsolo import RSCodec
from raptorq import Decoder
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("-i", "--input", help="camera device index or input video file", default=0)
parser.add_argument("-o", "--output", help="output file for decoded data")
parser.add_argument("-x", "--height", help="grid height", default=100, type=int)
parser.add_argument("-y", "--width", help="grid width", default=100, type=int)
parser.add_argument("-f", "--fps", help="frame rate", default=30, type=int)
parser.add_argument("-l", "--level", help="error correction level", default=0.1, type=float)
parser.add_argument("-s", "--size", help="number of bytes to decode", default=2**16, type=int)
parser.add_argument("-e", "--erasure", help="detect erasures", action="store_true")
args = parser.parse_args()
cheight = cwidth = max(args.height // 10, args.width // 10)
frame_size = args.height * args.width - 4 * cheight * cwidth
frame_xor = np.arange(frame_size // 2, dtype=np.uint8)
rs_size = frame_size // 2 - (frame_size // 2 + 254) // 255 * int(args.level * 255) - 4
rsc = RSCodec(int(args.level * 255))
decoder = Decoder.with_defaults(args.size, rs_size)
def find_corner(A, f):
cx, cy = A.shape[:2]
# Resize so smaller dim is 8
scale = min(cx // 8, cy // 8)
B = cv2.resize(A, (cy // scale, cx // scale), interpolation=cv2.INTER_AREA)
guess = np.array(np.unravel_index(np.argmax(f(B.astype(np.float64))), B.shape[:2])) * scale + scale // 2
mask = cv2.floodFill(
A,
np.empty(0),
tuple(reversed(guess)),
0,
(50, 50, 50),
(50, 50, 50),
cv2.FLOODFILL_MASK_ONLY + cv2.FLOODFILL_FIXED_RANGE,
)[2][1:-1, 1:-1].astype(bool)
return np.average(np.where(mask), axis=1), np.average(A[mask], axis=0).astype(np.float64)
if args.input.isdecimal():
args.input = int(args.input)
cap = cv2.VideoCapture(args.input)
data = None
while data is None:
try:
ret, raw_frame = cap.read()
if not ret:
print("End of stream")
break
cv2.imshow("", raw_frame)
cv2.waitKey(1)
# raw_frame is a uint8 BE CAREFUL
raw_frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2RGB)
X, Y = raw_frame.shape[:2]
cx, cy = X // 3, Y // 3
widx, wcol = find_corner(raw_frame[:cx, :cy], lambda B: np.sum(B, axis=2) - np.std(B, axis=2))
ridx, rcol = find_corner(raw_frame[:cx, Y - cy :], lambda B: B[:, :, 0] - B[:, :, 1] - B[:, :, 2])
ridx[1] += Y - cy
gidx, gcol = find_corner(raw_frame[X - cx :, :cy], lambda B: B[:, :, 1] - B[:, :, 2] - B[:, :, 0])
gidx[0] += X - cx
bidx, bcol = find_corner(raw_frame[X - cx :, Y - cy :], lambda B: B[:, :, 2] - B[:, :, 0] - B[:, :, 1])
bidx[0] += X - cx
bidx[1] += Y - cy
# Find basis of color space
origin = (rcol + gcol + bcol - wcol) / 2
rcol -= origin
gcol -= origin
bcol -= origin
F = 255 * np.linalg.inv(np.stack((rcol, gcol, bcol)).T)
# Dumb perspective transform
xv = np.linspace(
-(cheight / 2 - 1) / (args.height - cheight + 1),
1 + (cheight / 2 - 1) / (args.height - cheight + 1),
args.height,
)
yv = np.linspace(
-(cwidth / 2 - 1) / (args.width - cwidth + 1),
1 + (cwidth / 2 - 1) / (args.width - cwidth + 1),
args.width,
)
xp = (
np.outer(1 - xv, 1 - yv) * widx[0]
+ np.outer(1 - xv, yv) * ridx[0]
+ np.outer(xv, 1 - yv) * gidx[0]
+ np.outer(xv, yv) * bidx[0]
)
yp = (
np.outer(1 - xv, 1 - yv) * widx[1]
+ np.outer(1 - xv, yv) * ridx[1]
+ np.outer(xv, 1 - yv) * gidx[1]
+ np.outer(xv, yv) * bidx[1]
)
# plt.scatter(widx[1], widx[0])
# plt.scatter(ridx[1], ridx[0])
# plt.scatter(gidx[1], gidx[0])
# plt.scatter(bidx[1], bidx[0])
# plt.scatter(yp, xp)
# plt.imshow(raw_frame.astype(np.uint8))
# plt.show()
frame = raw_frame[
np.clip(np.round(xp).astype(np.int64), 0, X - 1), np.clip(np.round(yp).astype(np.int64), 0, Y - 1), :
]
frame = np.clip(np.squeeze(F @ (frame - origin)[..., np.newaxis]), 0, 255).astype(np.uint8)
frame = (frame[:, :, 0] >> 7) + (frame[:, :, 1] >> 5 & 0b0110) + (frame[:, :, 2] >> 4 & 0b1000)
frame = np.concatenate(
(
frame[:cheight, cwidth : args.width - cwidth].flatten(),
frame[cheight : args.height - cheight].flatten(),
frame[args.height - cheight :, cwidth : args.width - cwidth].flatten(),
)
)
frame = (frame[::2] << 4) + frame[1::2]
# frame = np.pad(frame, (0, (len(frame) + 254) // 255 * 255 - len(frame)))
# frame = np.ravel(frame.reshape(255, len(frame) // 255), "F")[: frame_size // 2]
erase_pos = bytearray(np.where(frame == 0)[0]) if args.erasure else bytearray()
data = decoder.decode(bytes(rsc.decode(bytearray(frame ^ frame_xor), erase_pos=erase_pos)[0]))
print("Decoded frame")
except KeyboardInterrupt:
sys.exit()
except:
traceback.print_exc()
with open(args.output, "wb") as f:
f.write(data)
cap.release()
|