aboutsummaryrefslogtreecommitdiff
path: root/display_animation_tkinter.py
blob: f26202cd1ae16966bfde9bf29d5ea04fa8b98845 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import argparse
import json
import math
import time
import tkinter as tk

import numpy as np

from utils import rgb_to_hex


def parse_args():
    return {
        "cell_size": 8,  # in pixels
        "num_cells_w": 100,  # TODO: w/h or r/c?
        "num_cells_h": 100,
        "colors_path": "configs/colors_64_v0.json",
        "corners_path": "configs/corners_hollow4x4_v0.json",
        "frame_delay": 1000 // 15,  # time b/w frames, in millis
    }


def seq_to_frames(bin_seq: np.ndarray, args: dict) -> np.ndarray:  # TODO: Namespace
    """
    Converts a binary sequence to an array of frames.
    TODO: doc, expecting size of exactly one frame in the future?

    np.packbits seems relevant but limited to 8 bits

    Args:
        bin_seq: a 1D array of binary values.
        args: config parameters

    Returns:
        array of shape (num_frames, args["num_cells_h"], args["num_cells_w"]), where each element is
        a hex string for the color of that cell
    """
    bin_seq = bin_seq.copy()  # so that we don't mutate bin_seq

    with open(args["colors_path"], "r") as f:
        colors = json.load(f)

    with open(args["corners_path"], "r") as f:
        corners = json.load(f)

    assert len(corners["corner_colors"]) == 4, "Hardcoded for 4 corners"
    corner_width = corners["corner_width"]
    corner_height = corners["corner_height"]

    num_colors = len(colors)
    bits_per_cell = int(math.log2(num_colors))
    assert 2**bits_per_cell == num_colors, "Assumed the number of colors is a power of 2."

    # bits_per_frame = bits_per_cell * args["num_cells_w"] * args["num_cells_h"]
    # num_frames = int(math.ceil(len(bin_seq) / bits_per_frame))
    # bin_seq.resize(bits_per_frame * num_frames)
    # # frames_bits = bin_seq.reshape(num_frames, args["num_cells_h"], args["num_cells_w"], bits_per_cell)
    #
    # pows = 2 ** np.arange(bits_per_cell)
    # frames_vals = (frames_bits * pows).sum(axis=-1)  # low to high bit order

    cells_per_frame = args["num_cells_w"] * args["num_cells_h"] - 4 * corner_width * corner_height
    bits_per_frame = bits_per_cell * cells_per_frame
    num_frames = int(math.ceil(len(bin_seq) / bits_per_frame))
    bin_seq.resize(bits_per_frame * num_frames)
    frames_bits = bin_seq.reshape(num_frames, cells_per_frame, bits_per_cell)
    pows = 2 ** np.arange(bits_per_cell)
    frames_vals = (frames_bits * pows).sum(axis=-1)  # low to high bit order

    # Efficiently map frame_vals to the corresponding hex colors (https://stackoverflow.com/a/55950051)
    color_mapping_arr = np.empty(num_colors, dtype="<U7")
    for i in range(num_colors):
        color_mapping_arr[i] = rgb_to_hex(colors[str(i)])  # JSON keys stored as str

    frames_colors = color_mapping_arr[frames_vals]

    num_top_cells = (args["num_cells_w"] - 2 * corner_width) * corner_height  # TODO: explain
    top_cells = frames_colors[:, :num_top_cells].reshape(num_frames, corner_height, -1)
    center_cells = frames_colors[:, num_top_cells:-num_top_cells].reshape(num_frames, -1, args["num_cells_w"])
    bottom_cells = frames_colors[:, -num_top_cells:].reshape(num_frames, corner_height, -1)

    corners_numpy_dict = {key: np.broadcast_to(val, (num_frames, corner_height, corner_width))
                          for key, val in corners["corner_colors"].items()}
    top_rows = np.concatenate([corners_numpy_dict["0"], top_cells, corners_numpy_dict["1"]], axis=2)
    bottom_rows = np.concatenate([corners_numpy_dict["2"], bottom_cells, corners_numpy_dict["3"]], axis=2)

    return np.concatenate([top_rows, center_cells, bottom_rows], axis=1)


class AnimatedFrames:
    def __init__(self, frames: np.ndarray, args: dict):
        self.frames = frames
        self.args = args
        self.width_pixels = args["cell_size"] * args["num_cells_w"]
        self.height_pixels = args["cell_size"] * args["num_cells_h"]

        self.root = tk.Tk()
        self.root.columnconfigure(0, weight=1)
        self.root.rowconfigure(0, weight=1)
        self.canvas = tk.Canvas(self.root, width=self.width_pixels, height=self.height_pixels,
                                borderwidth=0, highlightthickness=0)  # https://stackoverflow.com/a/63220348
        self.canvas.grid(column=0, row=0)

        # We will create each cell (rectangle) now, and then update their colors in different frames
        self.inds_to_id = dict()  # map from (row_ind, col_ind) to the id of the rectangle at that cell position
        for i in range(args["num_cells_h"]):
            for j in range(args["num_cells_w"]):
                self.inds_to_id[(i, j)] = self.canvas.create_rectangle(
                    i * args["cell_size"], j * args["cell_size"], (i + 1) * args["cell_size"],
                    (j + 1) * args["cell_size"], width=0
                )

        self.frame_ind = 0  # the index in `self.frames` of the next frame to display
        self.start_time = None
        self._debug_text_id = self.canvas.create_text((args["num_cells_w"] - 2) * args["cell_size"], (args["num_cells_h"] - 2) * args["cell_size"])

    def display_frame(self):
        func_start_time = time.time_ns()
        for inds_tuple, color_hex in np.ndenumerate(self.frames[self.frame_ind % len(self.frames)]):
            self.canvas.itemconfigure(self.inds_to_id[inds_tuple], fill=color_hex)

        self.canvas.itemconfigure(self._debug_text_id, text=self.frame_ind)
        self.frame_ind += 1

        adjusted_delay = round((self.start_time + self.args["frame_delay"] * int(1e6)
                                * self.frame_ind - func_start_time) / 1e6)
        assert adjusted_delay > 1, adjusted_delay  # o/w we lagged too far behind, assuming 1 ms for this instruction
        self.canvas.after(adjusted_delay, self.display_frame)  # TODO: check delay is exact
        # TODO: set self time and just sleep until then

    def animate(self):
        epilepsy_warning_id = self.canvas.create_text(self.width_pixels / 2, self.height_pixels / 2,
                                                      text="Warning: Epilepsy")

        def delete_and_animate():
            self.canvas.delete(epilepsy_warning_id)
            self.start_time = time.time_ns()
            self.display_frame()

        self.canvas.after(5000, delete_and_animate)
        # self.display_frame()
        self.root.mainloop()


if __name__ == "__main__":
    args = parse_args()

    rand_bin_seq = np.random.randint(2, size=1000000)
    frames = seq_to_frames(rand_bin_seq, args)

    AnimatedFrames(frames, args).animate()