aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorTa180m2020-02-05 16:37:48 -0600
committerTa180m2020-02-05 16:37:48 -0600
commit7a6e59878d12c72f8071b5f8c5d05bb241099385 (patch)
tree625c6a006feffade6b2e529822c32e342530ad68
parente0841d54009a294261d0fecb4c0a61586f5edc6b (diff)
Create Detector_Building.ino
-rw-r--r--Detector_Building/Detector_Building.ino168
1 files changed, 168 insertions, 0 deletions
diff --git a/Detector_Building/Detector_Building.ino b/Detector_Building/Detector_Building.ino
new file mode 100644
index 0000000..e9e71f1
--- /dev/null
+++ b/Detector_Building/Detector_Building.ino
@@ -0,0 +1,168 @@
+/*
+ * Detector Building
+ * Code by Anthony Wang
+ * Ladue High School Science Olympiad
+ */
+
+
+/*
+ * TODO:
+ * BUG FIXING: Expect bugs!
+ */
+
+
+// Constants
+const int LED_R = 4, LED_G = 3, LED_B = 2, THERM = 0; // Device component pins
+const double R_k = 10000, V_in = 5, analog_max = 1023; // Device constants
+
+
+// Temperature conversions
+inline double f2c(double f) { return (f - 32) * 5 / 9; } // Fahrenheit to Celsius
+inline double c2f(double c) { return c * 9 / 5 + 32; } // Celsius to Fahrenheit
+inline double k2c(double k) { return k - 273.15; } // Kelvin to Celsius
+inline double c2k(double c) { return c + 273.15; } // Celsius to Kelvin
+inline double f2k(double f) { return c2k(f2c(f)); } // Fahrenheit to Kelvin
+inline double k2f(double k) { return c2f(k2c(k)); } // Kelvin to Fahrenheit
+
+
+// Analog to digital conversion
+inline double a2d(int a) { return V_in * a / analog_max; }
+inline int d2a(double d) { return d * analog_max / V_in; }
+
+
+// Utility functions
+// No C++ standard library :(
+void sort(int& a[], int n) {
+ // Bubble sort
+ // Slow but n < 30 so OK
+ // Too lazy to implement a fast sort
+ for (int i = 0; i < n; i++) {
+ for (int j = 0; j < n - 1; j++) {
+ if (a[j] > a[j + 1]) {
+ int tmp = a[j];
+ a[j] = a[j + 1];
+ a[j + 1] = tmp;
+ }
+ }
+ }
+}
+
+
+// Calibration data
+const int n = 3, m = n / 3; // Number of data points, MUST be multiple of 3
+double V[n] = { 2.5, 3.26, 3.96 }; // Voltage measurements
+double T[n] = { 25, 39.15, 60 }; // Temperature measurements
+double V_mid[m]; // Stores each piecewise segment for binary search
+double A[m], B[m], C[m]; // Coefficients for each piecewise component
+
+
+// Calculations
+// Steinhart-hart stuff
+void calculate() {
+ sort(V, n);
+ sort(T, n);
+ double R[n], L[n], Y[n], G[n];
+ for (int i = 0; i < n; i++) R[i] = R_k * (V_in / V[i] - 1);
+ for (int i = 0; i < n; i++) L[i] = log(R[i]);
+ for (int i = 0; i < n; i++) Y[i] = 1 / c2k(T[i]);
+ for (int i = 0; i < n; i += 3) {
+ G[i + 1] = (Y[i + 1] - Y[i]) / (L[i + 1] - L[i]);
+ G[i + 2] = (Y[i + 2] - Y[i]) / (L[i + 2] - L[i]);
+ }
+ for (int i = 0; i < n; i += 3) { // Don't ask how this works
+ C[i / 3] = (G[i + 2] - G[i + 1]) / (L[i + 2] - L[i + 1]) / (L[i] + L[i + 1] + L[i + 2]);
+ B[i / 3] = G[i + 1] - C[i / 3] * (L[i] * L[i] + L[i] * L[i + 1] + L[i + 1] * L[i + 1]);
+ A[i / 3] = Y[i] - L[i] * (B[i / 3] + L[i] * L[i] * C[i / 3]);
+ }
+ for (int i = 0; i < n; i += 3) V_mid[i / 3] = (i ? (V[i - 1] + V[i]) / 2 : V[i]);
+}
+
+
+// Arduino stuff
+void blink(int pin) {
+ digitalWrite(pin, HIGH);
+ delay(1000);
+ digitalWrite(pin, LOW);
+}
+void setup() {
+ Serial.begin(9600);
+ pinMode(LED_R, OUTPUT);
+ pinMode(LED_G, OUTPUT);
+ pinMode(LED_B, OUTPUT);
+
+ // blink(LED_R);
+ // blink(LED_G);
+ // blink(LED_B);
+
+ // Debug stuff
+ /*for (int i = 0; i < m; i++) {
+ Serial.print("Segment lower bound: ");
+ Serial.print(i ? V_mid[i - 1] : 0);
+ Serial.print(" Segment upper bound: ");
+ Serial.print(V_mid[i]);
+ Serial.print(" A: ");
+ Serial.print(A[i], 12);
+ Serial.print(" B: ");
+ Serial.print(B[i], 12);
+ Serial.print(" C: ");
+ Serial.print(C[i], 12);
+ Serial.println();
+ }*/
+}
+
+
+// Main loop
+void loop() {
+ int V_raw = analogRead(THERM); // Read in raw analog value
+ double V_out = a2d(V_raw); // Convert analog to digital
+ double R_t = R_k * (V_in / V_out - 1); // Thermistor resistance
+
+ int s = 0;
+ while (s < m && V_out > V_mid[s + 1]) s++; // Find correct segment
+
+ double logR_t = log(R_t);
+ double K = 1.0 / (A[s] + B[s] * logR_t + C[s] * logR_t * logR_t * logR_t); // Steinhart-hart
+ double C = k2c(K);
+ double F = c2f(C);
+
+ // LED stuff
+ if (C <= 25) {
+ digitalWrite(LED_R, LOW);
+ digitalWrite(LED_G, LOW);
+ digitalWrite(LED_B, HIGH);
+ }
+ else if (C <= 50) {
+ digitalWrite(LED_R, LOW);
+ digitalWrite(LED_G, HIGH);
+ digitalWrite(LED_B, LOW);
+ }
+ else if (C <= 75) {
+ digitalWrite(LED_R, HIGH);
+ digitalWrite(LED_G, LOW);
+ digitalWrite(LED_B, LOW);
+ }
+ else {
+ digitalWrite(LED_R, HIGH);
+ digitalWrite(LED_G, HIGH);
+ digitalWrite(LED_B, HIGH);
+ }
+
+ // Output voltage, temperature
+ Serial.print("Raw analog reading: ");
+ Serial.print(V_raw);
+ Serial.print(" Voltage (V): ");
+ Serial.print(V_out);
+ Serial.print(" Temperature (°C): ");
+ Serial.print(C);
+ Serial.print(" Temperature (°F): "); // For reference
+ Serial.print(F);
+
+ // Debug stuff
+ /*Serial.print(" Segment lower bound: ");
+ Serial.print(s ? V_mid[s - 1] : 0);
+ Serial.print(" Segment upper bound: ");
+ Serial.print(V_mid[s]);*/
+
+ Serial.println();
+ delay(500);
+}