aboutsummaryrefslogtreecommitdiff
path: root/Detector_Building/Detector_Building.ino
diff options
context:
space:
mode:
Diffstat (limited to 'Detector_Building/Detector_Building.ino')
-rw-r--r--Detector_Building/Detector_Building.ino195
1 files changed, 0 insertions, 195 deletions
diff --git a/Detector_Building/Detector_Building.ino b/Detector_Building/Detector_Building.ino
deleted file mode 100644
index a4f6206..0000000
--- a/Detector_Building/Detector_Building.ino
+++ /dev/null
@@ -1,195 +0,0 @@
-/*
- * Detector Building
- * Code by Anthony Wang
- * Ladue High School Science Olympiad
- */
-
-
-/*
- * DON'T USE: The calibration method is known to be highly inaccurate
- */
-
-
-// Constants
-const bool CALIB = false; // Calibration mode
-const int LED_R = 4, LED_G = 3, LED_B = 2, THERM = 0; // Device component pins
-const double R_k = 10000, V_in = 5, analog_max = 1023; // Device constants
-
-// Calibration data
-const int n = 6, m = n / 3; // Number of data points, MUST be multiple of 3
-double V[n] = { 2.81, 3.31, 3.36, 3.81, 4.03, 4.21 }; // Voltage measurements
-double T[n] = { 18.5, 29.1, 33.1, 48.0, 59.0, 70.0 }; // Temperature measurements
-double V_mid[m]; // Stores each piecewise segment for binary search
-double A[m], B[m], C[m]; // Coefficients for each piecewise component
-
-
-// Temperature conversions
-inline double f2c(double f) { return (f - 32) * 5 / 9; } // Fahrenheit to Celsius
-inline double c2f(double c) { return c * 9 / 5 + 32; } // Celsius to Fahrenheit
-inline double k2c(double k) { return k - 273.15; } // Kelvin to Celsius
-inline double c2k(double c) { return c + 273.15; } // Celsius to Kelvin
-inline double f2k(double f) { return c2k(f2c(f)); } // Fahrenheit to Kelvin
-inline double k2f(double k) { return c2f(k2c(k)); } // Kelvin to Fahrenheit
-
-
-// Analog to digital conversion
-inline double a2d(int a) { return V_in * a / analog_max; }
-inline int d2a(double d) { return d * analog_max / V_in; }
-
-
-// Utility functions
-// No C++ standard library :(
-void sort(double a[], int n) {
- // Bubble sort
- // Slow but n < 30 so OK
- // Too lazy to implement a fast sort
- for (int i = 0; i < n; i++) {
- for (int j = 0; j < n - 1; j++) {
- if (a[j] > a[j + 1]) {
- double tmp = a[j];
- a[j] = a[j + 1];
- a[j + 1] = tmp;
- }
- }
- }
-}
-
-
-// Calculations
-// Steinhart-hart stuff
-void calculate() {
- sort(V, n);
- sort(T, n);
- double R[n], L[n], Y[n], G[n];
- for (int i = 0; i < n; i++) R[i] = R_k * (V_in / V[i] - 1);
- for (int i = 0; i < n; i++) L[i] = log(R[i]);
- for (int i = 0; i < n; i++) Y[i] = 1 / c2k(T[i]);
- for (int i = 0; i < n; i += 3) {
- G[i + 1] = (Y[i + 1] - Y[i]) / (L[i + 1] - L[i]);
- G[i + 2] = (Y[i + 2] - Y[i]) / (L[i + 2] - L[i]);
- }
- for (int i = 0; i < n; i += 3) { // Don't ask how this works
- C[i / 3] = (G[i + 2] - G[i + 1]) / (L[i + 2] - L[i + 1]) / (L[i] + L[i + 1] + L[i + 2]);
- B[i / 3] = G[i + 1] - C[i / 3] * (L[i] * L[i] + L[i] * L[i + 1] + L[i + 1] * L[i + 1]);
- A[i / 3] = Y[i] - L[i] * (B[i / 3] + L[i] * L[i] * C[i / 3]);
- }
- for (int i = 0; i < n; i += 3) V_mid[i / 3] = (i ? (V[i - 1] + V[i]) / 2 : 0);
-}
-
-
-// Arduino stuff
-void blink(int pin) {
- digitalWrite(pin, HIGH);
- delay(1000);
- digitalWrite(pin, LOW);
-}
-// More Arduino stuff
-void setup() {
- Serial.begin(9600);
- pinMode(LED_R, OUTPUT);
- pinMode(LED_G, OUTPUT);
- pinMode(LED_B, OUTPUT);
-
- // blink(LED_R);
- // blink(LED_G);
- // blink(LED_B);
-
- calculate();
-
- // Debug stuff
- /*for (int i = 0; i < n; i++) {
- Serial.print(V[i]);
- Serial.print(" ");
- Serial.print(T[i]);
- Serial.print(" ");
- }
- Serial.println();
- for (int i = 0; i < m; i++) {
- Serial.print("Segment lower bound: ");
- Serial.print(V_mid[i]);
- Serial.print(" Segment upper bound: ");
- Serial.print(V_mid[i + 1]);
- Serial.print(" A: ");
- Serial.print(A[i], 12);
- Serial.print(" B: ");
- Serial.print(B[i], 12);
- Serial.print(" C: ");
- Serial.print(C[i], 12);
- Serial.println();
- }*/
-}
-
-
-// Main loop
-void loop() {
- int V_raw = analogRead(THERM); // Read in raw analog value
- double V_out = a2d(V_raw); // Convert analog to digital
- double R_t = R_k * (V_in / V_out - 1); // Thermistor resistance
-
- if (CALIB) {
- // Calibration mode
- Serial.print("Raw analog reading: ");
- Serial.print(V_raw);
- Serial.print(" Voltage (V): ");
- Serial.print(V_out);
- Serial.println();
- delay(500);
- return;
- }
-
-
- int s = 0;
- while (s + 1 < m && V_out > V_mid[s + 1]) s++; // Find correct segment
-
- double logR_t = log(R_t);
- double K = 1.0 / (A[s] + B[s] * logR_t + C[s] * logR_t * logR_t * logR_t); // Steinhart-hart
- double C = k2c(K);
- double F = c2f(C);
-
-
- // LED stuff
- if (C <= 25) { // Cold
- digitalWrite(LED_R, LOW);
- digitalWrite(LED_G, LOW);
- digitalWrite(LED_B, HIGH);
- }
- else if (C <= 50) { // Medium
- digitalWrite(LED_R, LOW);
- digitalWrite(LED_G, HIGH);
- digitalWrite(LED_B, LOW);
- }
- else if (C <= 75) { // Hot
- digitalWrite(LED_R, HIGH);
- digitalWrite(LED_G, LOW);
- digitalWrite(LED_B, LOW);
- }
- else { // Something seriously wrong
- digitalWrite(LED_R, HIGH);
- digitalWrite(LED_G, HIGH);
- digitalWrite(LED_B, HIGH);
- }
-
-
- // Output voltage, temperature
- Serial.print("Raw analog reading: ");
- Serial.print(V_raw);
- Serial.print(" Voltage (V): ");
- Serial.print(V_out);
- //Serial.print(" Resistance (Ohms): ");
- //Serial.print(R_t);
- Serial.print(" Temperature (°C): ");
- Serial.print(C);
- // For reference
- //Serial.print(" Temperature (°F): ");
- //Serial.print(F);
-
- // Debug stuff
- /*Serial.print(" Segment lower bound: ");
- Serial.print(V_mid[s]);
- Serial.print(" Segment upper bound: ");
- Serial.print(V_mid[s + 1]);
-
- Serial.println();*/
- delay(500);
- return;
-}