diff options
Diffstat (limited to 'libraries/CurveFitting/src/curveFitting.cpp')
-rw-r--r-- | libraries/CurveFitting/src/curveFitting.cpp | 195 |
1 files changed, 195 insertions, 0 deletions
diff --git a/libraries/CurveFitting/src/curveFitting.cpp b/libraries/CurveFitting/src/curveFitting.cpp new file mode 100644 index 0000000..5e526c0 --- /dev/null +++ b/libraries/CurveFitting/src/curveFitting.cpp @@ -0,0 +1,195 @@ +/* + curveFitting.h - Library for fitting curves to given + points using Least Squares method, with Cramer's rule + used to solve the linear equation. Max polynomial order 20. + Created by Rowan Easter-Robinson, August 23, 2018. + Released into the public domain. +*/ + +#include <Arduino.h> +#include "curveFitting.h" + +void printMat(const char *s, double*m, int n){ + Serial.println(s); + char buf[40]; + for (int i = 0; i < n; i++) { + for (int j = 0; j < n; j++) { + snprintf(buf, 40, "%30.4f\t", m[i*n+j]); + Serial.print(buf); + } + Serial.println(); + } +} + +void showmat(const char *s, double **m, int n){ + Serial.println(s); + char buf[40]; + for (int i = 0; i < n; i++) { + for (int j = 0; j < n; j++){ + snprintf(buf, 40, "%30.4f\t", m[i][j]); + Serial.print(buf); + } + Serial.println(); + } +} + +void cpyArray(double *src, double*dest, int n){ + for (int i = 0; i < n*n; i++){ + dest[i] = src[i]; + } +} + +void subCol(double *mat, double* sub, uint8_t coln, uint8_t n){ + if (coln >= n) return; + for (int i = 0; i < n; i++){ + mat[(i*n)+coln] = sub[i]; + } +} + +/*Determinant algorithm taken from https://codeforwin.org/2015/08/c-program-to-find-determinant-of-matrix.html */ +int trianglize(double **m, int n) +{ + int sign = 1; + for (int i = 0; i < n; i++) { + int max = 0; + for (int row = i; row < n; row++) + if (fabs(m[row][i]) > fabs(m[max][i])) + max = row; + if (max) { + sign = -sign; + double *tmp = m[i]; + m[i] = m[max], m[max] = tmp; + } + if (!m[i][i]) return 0; + for (int row = i + 1; row < n; row++) { + double r = m[row][i] / m[i][i]; + if (!r) continue; + for (int col = i; col < n; col ++) + m[row][col] -= m[i][col] * r; + } + } + return sign; +} + +double det(double *in, int n, uint8_t prnt) +{ + double *m[n]; + m[0] = in; + + for (int i = 1; i < n; i++) + m[i] = m[i - 1] + n; + if(prnt) showmat("Matrix", m, n); + int sign = trianglize(m, n); + if (!sign) + return 0; + if(prnt) showmat("Upper triangle", m, n); + double p = 1; + for (int i = 0; i < n; i++) + p *= m[i][i]; + return p * sign; +} +/*End of Determinant algorithm*/ + +//Raise x to power +double curveFitPower(double base, int exponent){ + if (exponent == 0){ + return 1; + } else { + double val = base; + for (int i = 1; i < exponent; i++){ + val = val * base; + } + return val; + } +} + +int fitCurve (int order, int nPoints, double py[], int nCoeffs, double *coeffs) { + uint8_t maxOrder = MAX_ORDER; + if (nCoeffs != order + 1) return ORDER_AND_NCOEFFS_DO_NOT_MATCH; // no of coefficients is one larger than the order of the equation + if (nCoeffs > maxOrder || nCoeffs < 2) return ORDER_INCORRECT; //matrix memory hard coded for max of 20 order, which is huge + if (nPoints < 1) return NPOINTS_INCORRECT; //Npoints needs to be positive and nonzero + int i, j; + double T[MAX_ORDER] = {0}; //Values to generate RHS of linear equation + double S[MAX_ORDER*2+1] = {0}; //Values for LHS and RHS of linear equation + double denom; //denominator for Cramer's rule, determinant of LHS linear equation + double x, y; + + double px[nPoints]; //Generate X values, from 0 to n + for (i=0; i<nPoints; i++){ + px[i] = i; + } + + for (i=0; i<nPoints; i++) {//Generate matrix elements + x = px[i]; + y = py[i]; + for (j = 0; j < (nCoeffs*2)-1; j++){ + S[j] += curveFitPower(x, j); // x^j iterated , S10 S20 S30 etc, x^0, x^1... + } + for (j = 0; j < nCoeffs; j++){ + T[j] += y * curveFitPower(x, j); //y * x^j iterated, S01 S11 S21 etc, x^0*y, x^1*y, x^2*y... + } + } + + double masterMat[nCoeffs*nCoeffs]; //Master matrix LHS of linear equation + for (i = 0; i < nCoeffs ;i++){//index by matrix row each time + for (j = 0; j < nCoeffs; j++){//index within each row + masterMat[i*nCoeffs+j] = S[i+j]; + } + } + + double mat[nCoeffs*nCoeffs]; //Temp matrix as det() method alters the matrix given + cpyArray(masterMat, mat, nCoeffs); + denom = det(mat, nCoeffs, CURVE_FIT_DEBUG); + cpyArray(masterMat, mat, nCoeffs); + + //Generate cramers rule mats + for (i = 0; i < nCoeffs; i++){ //Temporary matrix to substitute RHS of linear equation as per Cramer's rule + subCol(mat, T, i, nCoeffs); + coeffs[nCoeffs-i-1] = det(mat, nCoeffs, CURVE_FIT_DEBUG)/denom; //Coefficients are det(M_i)/det(Master) + cpyArray(masterMat, mat, nCoeffs); + } + return 0; +} + +int fitCurve (int order, int nPoints, double px[], double py[], int nCoeffs, double *coeffs) { + uint8_t maxOrder = MAX_ORDER; + if (nCoeffs != order + 1) return ORDER_AND_NCOEFFS_DO_NOT_MATCH; //Number of coefficients is one larger than the order of the equation + if(nCoeffs > maxOrder || nCoeffs < 2) return ORDER_INCORRECT; //Matrix memory hard coded for max of 20 order, which is huge + if (nPoints < 1) return NPOINTS_INCORRECT; //Npoints needs to be positive and nonzero + int i, j; + double T[MAX_ORDER] = {0}; //Values to generate RHS of linear equation + double S[MAX_ORDER*2+1] = {0}; //Values for LHS and RHS of linear equation + double denom; //denominator for Cramer's rule, determinant of LHS linear equation + double x, y; + + for (i=0; i<nPoints; i++) {//Generate matrix elements + x = px[i]; + y = py[i]; + for (j = 0; j < (nCoeffs*2)-1; j++){ + S[j] += curveFitPower(x, j); // x^j iterated , S10 S20 S30 etc, x^0, x^1... + } + for (j = 0; j < nCoeffs; j++){ + T[j] += y * curveFitPower(x, j); //y * x^j iterated, S01 S11 S21 etc, x^0*y, x^1*y, x^2*y... + } + } + + double masterMat[nCoeffs*nCoeffs]; //Master matrix LHS of linear equation + for (i = 0; i < nCoeffs ;i++){//index by matrix row each time + for (j = 0; j < nCoeffs; j++){//index within each row + masterMat[i*nCoeffs+j] = S[i+j]; + } + } + + double mat[nCoeffs*nCoeffs]; //Temp matrix as det() method alters the matrix given + cpyArray(masterMat, mat, nCoeffs); + denom = det(mat, nCoeffs, CURVE_FIT_DEBUG); + cpyArray(masterMat, mat, nCoeffs); + + //Generate cramers rule mats + for (i = 0; i < nCoeffs; i++){ //Temporary matrix to substitute RHS of linear equation as per Cramer's rule + subCol(mat, T, i, nCoeffs); + coeffs[nCoeffs-i-1] = det(mat, nCoeffs, CURVE_FIT_DEBUG)/denom; //Coefficients are det(M_i)/det(Master) + cpyArray(masterMat, mat, nCoeffs); + } + return 0; +} |