aboutsummaryrefslogtreecommitdiff
path: root/Detector_Building/Detector_Building.ino
blob: 44d0dc8ab4d79e1c6f85260eb9b3969373c770cf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
/*
 * Detector Building
 * Code by Anthony Wang
 * Ladue High School Science Olympiad
 */


/*
 * TODO:
 * BUG FIXING: Expect bugs!
 */


// Constants
const bool CALIB = false; // Calibration mode
const int LED_R = 4, LED_G = 3, LED_B = 2, THERM = 0; // Device component pins
const double R_k = 10000, V_in = 5, analog_max = 1023; // Device constants


// Calibration data
const int n = 3, m = n / 3; // Number of data points, MUST be multiple of 3
double V[n] = { 2.12, 3.26, 3.96 }; // Voltage measurements
double T[n] = { 22.0, 39.15, 60 }; // Temperature measurements
double V_mid[m]; // Stores each piecewise segment for binary search
double A[m], B[m], C[m]; // Coefficients for each piecewise component


// Temperature conversions
inline double f2c(double f) { return (f - 32) * 5 / 9; } // Fahrenheit to Celsius
inline double c2f(double c) { return c * 9 / 5 + 32; } // Celsius to Fahrenheit
inline double k2c(double k) { return k - 273.15; } // Kelvin to Celsius
inline double c2k(double c) { return c + 273.15; } // Celsius to Kelvin
inline double f2k(double f) { return c2k(f2c(f)); } // Fahrenheit to Kelvin
inline double k2f(double k) { return c2f(k2c(k)); } // Kelvin to Fahrenheit


// Analog to digital conversion
inline double a2d(int a) { return V_in * a / analog_max; }
inline int d2a(double d) { return d * analog_max / V_in; }

  
// Utility functions
// No C++ standard library :(
void sort(double a[], int n) {
  // Bubble sort
  // Slow but n < 30 so OK
  // Too lazy to implement a fast sort
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < n - 1; j++) {
      if (a[j] > a[j + 1]) {
        double tmp = a[j];
        a[j] = a[j + 1];
        a[j + 1] = tmp;
      }
    }
  }
}


// Calculations
// Steinhart-hart stuff
void calculate() {
  sort(V, n);
  sort(T, n);
  double R[n], L[n], Y[n], G[n];
  for (int i = 0; i < n; i++) R[i] = R_k * (V_in / V[i] - 1);
  for (int i = 0; i < n; i++) L[i] = log(R[i]);
  for (int i = 0; i < n; i++) Y[i] = 1 / c2k(T[i]);
  for (int i = 0; i < n; i += 3) {
    G[i + 1] = (Y[i + 1] - Y[i]) / (L[i + 1] - L[i]);
    G[i + 2] = (Y[i + 2] - Y[i]) / (L[i + 2] - L[i]);
  }
  for (int i = 0; i < n; i += 3) { // Don't ask how this works
    C[i / 3] = (G[i + 2] - G[i + 1]) / (L[i + 2] - L[i + 1]) / (L[i] + L[i + 1] + L[i + 2]);
    B[i / 3] = G[i + 1] - C[i / 3] * (L[i] * L[i] + L[i] * L[i + 1] + L[i + 1] * L[i + 1]);
    A[i / 3] = Y[i] - L[i] * (B[i / 3] + L[i] * L[i] * C[i / 3]);
  }
  for (int i = 0; i < n; i += 3) V_mid[i / 3] = (i ? (V[i - 1] + V[i]) / 2 : V[i]);
}


// Arduino stuff
void blink(int pin) {
  digitalWrite(pin, HIGH);
  delay(1000);
  digitalWrite(pin, LOW);  
}
void setup() {
  Serial.begin(9600);
  pinMode(LED_R, OUTPUT);
  pinMode(LED_G, OUTPUT);
  pinMode(LED_B, OUTPUT);

  // blink(LED_R);
  // blink(LED_G);
  // blink(LED_B);

  calculate();

  // Debug stuff
  /*for (int i = 0; i < n; i++) {
    Serial.print(V[i]);
    Serial.print(" ");
    Serial.print(T[i]);
    Serial.print(" ");
  }
  Serial.println();
  for (int i = 0; i < m; i++) {
    Serial.print("Segment lower bound: ");
    Serial.print(i ? V_mid[i - 1] : 0);
    Serial.print(" Segment upper bound: ");
    Serial.print(V_mid[i]);
    Serial.print(" A: ");
    Serial.print(A[i], 12);
    Serial.print(" B: ");
    Serial.print(B[i], 12);
    Serial.print(" C: ");
    Serial.print(C[i], 12);
    Serial.println();
  }*/
}


// Main loop
void loop() {
  int V_raw = analogRead(THERM); // Read in raw analog value
  double V_out = a2d(V_raw); // Convert analog to digital
  if (CALIB) {
      Serial.print("Raw analog reading: ");
      Serial.print(V_raw);
      Serial.print("  Voltage (V): ");
      Serial.print(V_out);
      Serial.println();
      delay(500);
      return;
  }
  double R_t = R_k * (V_in / V_out - 1); // Thermistor resistance

  int s = 0;
  while (s + 1 < m && V_out > V_mid[s + 1]) s++; // Find correct segment
  
  double logR_t = log(R_t);
  double K = 1.0 / (A[s] + B[s] * logR_t + C[s] * logR_t * logR_t * logR_t); // Steinhart-hart
  double C = k2c(K);
  double F = c2f(C);

  // LED stuff
  if (C <= 25) {
    digitalWrite(LED_R, LOW);
    digitalWrite(LED_G, LOW);
    digitalWrite(LED_B, HIGH);
  }
  else if (C <= 50) {
    digitalWrite(LED_R, LOW);
    digitalWrite(LED_G, HIGH);
    digitalWrite(LED_B, LOW);
  }
  else if (C <= 75) {
    digitalWrite(LED_R, HIGH);
    digitalWrite(LED_G, LOW);
    digitalWrite(LED_B, LOW);
  }
  else {
    digitalWrite(LED_R, HIGH);
    digitalWrite(LED_G, HIGH);
    digitalWrite(LED_B, HIGH);
  }
  
  // Output voltage, temperature
  Serial.print("Raw analog reading: ");
  Serial.print(V_raw);
  Serial.print(" Voltage (V): ");
  Serial.print(V_out);
  //Serial.print(" Resistance (Ohms): ");
  //Serial.print(R_t);
  Serial.print(" Temperature (°C): ");
  Serial.print(C);
  Serial.print(" Temperature (°F): "); // For reference
  Serial.print(F);
  
  // Debug stuff
  /*Serial.print(" Segment lower bound: ");
  Serial.print(s ? V_mid[s - 1] : 0);
  Serial.print(" Segment upper bound: ");
  Serial.print(V_mid[s]);*/

  Serial.println();
  delay(500);
  return;
}