1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
|
/*
Detector Building v2
Code by Anthony Wang
Ladue High School Science Olympiad
*/
/*
TODO:
New calibration method using cubic regression
*/
#include <curveFitting.h>
#include <detectorBuilding.h>
const bool CALIB = false; // Calibration mode
const int n = 17; // Number of data points
const int m = 1; // Number of segments
const int deg = 3; // Regression degree
ld data[2 * n] = {
// V T
2.70, 24.0
};
ld coeff[m][deg + 1], V[n], T[n];
void setup() {
Serial.begin(9600);
pinMode(LED_R, OUTPUT);
pinMode(LED_G, OUTPUT);
pinMode(LED_B, OUTPUT);
for (int i = 0; i < n; i++) {
V[i] = data[2 * i];
T[i] = data[2 * i + 1];
}
sort(V, n);
sort(T, n);
ld x[n], y[n];
for (int i = 0; i < n; i++) x[i] = log(v2r(V[i])) - 7;
for (int i = 0; i < n; i++) y[i] = 1000 / c2k(T[i]);
/*for (int i = 0; i < n; i++) {
Serial.print("{");
Serial.print((double)x[i], 12);
Serial.print(", ");
Serial.print((double)y[i], 12);
Serial.print("},");
Serial.println();
}*/
for (int i = 0; i < m; i++) {
int ret = fitCurve(deg, n / m, x + i * n / m, y + i * n / m, deg + 1, coeff[i]);
/*if (ret == 0) { // Returned value is 0 if no error
char c = 'A';
Serial.println("Coefficients are:");
for (int j = 0; j <= deg; j++){
Serial.print(c++);
Serial.print(": ");
Serial.print((double)coeff[i][j], 12);
Serial.println();
}
}*/
}
}
void loop() {
int V_raw = analogRead(THERM); // Read in raw analog value
ld V_out = a2d(V_raw);
if (CALIB) {
// Calibration mode
Serial.print("Raw analog reading: ");
Serial.print(V_raw);
Serial.print(" Voltage (V): ");
Serial.print((double)V_out);
Serial.println();
delay(500);
return;
}
int s = 0;
while (s + 1 < m && V_out < (V[s * n / m - 1] + V[s * n / m]) / 2) s++; // Find correct segment
ld logR = log(v2r(V_out)) - 7;
ld sum = 0, prod = 1;
for (int i = 0; i <= deg; i++) {
sum += coeff[s][deg - i] * prod;
prod *= logR;
}
ld K = 1000 / sum;
ld C = k2c(K);
ld F = c2f(C);
// LED stuff
if (C <= 30) { // Cold
digitalWrite(LED_R, LOW);
digitalWrite(LED_G, LOW);
digitalWrite(LED_B, HIGH);
}
else if (C <= 50) { // Medium
digitalWrite(LED_R, LOW);
digitalWrite(LED_G, HIGH);
digitalWrite(LED_B, LOW);
}
else if (C <= 75) { // Hot
digitalWrite(LED_R, HIGH);
digitalWrite(LED_G, LOW);
digitalWrite(LED_B, LOW);
}
else { // Something seriously wrong
digitalWrite(LED_R, HIGH);
digitalWrite(LED_G, HIGH);
digitalWrite(LED_B, HIGH);
}
// Output voltage, temperature
Serial.print("Raw analog reading: ");
Serial.print((double)V_raw);
Serial.print(" Voltage (V): ");
Serial.print((double)V_out);
Serial.print(" Temperature (°C): ");
Serial.print((double)C);
// For reference
/*Serial.print(" Temperature (°F): ");
Serial.print(F);
Serial.print(" s: ");
Serial.print(s);
Serial.print(" logR: ");
Serial.print(logR);*/
Serial.println();
delay(500);
return;
}
|