aboutsummaryrefslogtreecommitdiff
path: root/Detector_Building_v2/Detector_Building_v2.ino
blob: 05f148bd880205690a58a3efaf6879d550295597 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
/*
   Detector Building v2
   Code by Anthony Wang
   Ladue High School Science Olympiad
*/

/*
  TODO:
  New calibration method using cubic regression
*/

#include <curveFitting.h>
#include <detectorBuilding.h>

const bool CALIB = false; // Calibration mode
const int n = 17; // Number of data points
const int m = 1; // Number of segments
const int deg = 2; // Regression degree
ld V[n] = { // Voltage measurements
  2.70, 3.39, 2.40, 2.31, 2.19, 1.94, 4.09, 4.11, 3.98, 3.92, 3.77, 3.53, 3.18, 3.07, 2.30, 2.53, 2.49
};
ld T[n] = { // Temperature measurements
  24.0, 44.4, 18.4, 13.9, 11.2, 8.6, 60.8, 62.0, 58.3, 53.9, 49.3, 44.9, 41.0, 37.3, 13.4, 19.1, 18.2
};
ld coeff[m][deg + 1];


void setup() {
  Serial.begin(9600);
  pinMode(LED_R, OUTPUT);
  pinMode(LED_G, OUTPUT);
  pinMode(LED_B, OUTPUT);

  sort(V, n);
  sort(T, n);

  ld x[n], y[n];
  for (int i = 0; i < n; i++) x[i] = log(v2r(V[i])) - 7;
  for (int i = 0; i < n; i++) y[i] = 1000 / c2k(T[i]);
  for (int i = 0; i < n; i++) {
    Serial.print("(");
    Serial.print((double)x[i], 12);
    Serial.print(", ");
    Serial.print((double)y[i], 12);
    Serial.print(")");
    Serial.println();
  }
  for (int i = 0; i < m; i++) {
    int ret = fitCurve(deg, n / m, x + i * n / m, y + i * n / m, deg + 1, coeff[i]);
    if (ret == 0){ //Returned value is 0 if no error
      char c = 'A';
      Serial.println("Coefficients are:");
      for (int j = 0; j <= deg; j++){
        Serial.print(c++);
        Serial.print(": ");
        Serial.print((double)coeff[i][j], 12);
        Serial.println();
      }
    }
  }
}


void loop() {
  int V_raw = analogRead(THERM); // Read in raw analog value
  ld V_out = a2d(V_raw);
  if (CALIB) {
    // Calibration mode
    Serial.print("Raw analog reading: ");
    Serial.print(V_raw);
    Serial.print("  Voltage (V): ");
    Serial.print((double)V_out);
    Serial.println();
    delay(500);
    return;
  }

  int s = 0;
  while (s + 1 < m && V_out < (V[s * n / m - 1] + V[s * n / m]) / 2) s++; // Find correct segment
  
  ld logR = log(v2r(V_out)) - 7;
  ld sum = 0, prod = 1;
  for (int i = 0; i <= deg; i++) {
    sum += coeff[s][deg - i] * prod;
    prod *= logR;
  }
  ld K = 1000 / sum;
  ld C = k2c(K);
  ld F = c2f(C);


  // LED stuff
  if (C <= 30) { // Cold
    digitalWrite(LED_R, LOW);
    digitalWrite(LED_G, LOW);
    digitalWrite(LED_B, HIGH);
  }
  else if (C <= 50) { // Medium
    digitalWrite(LED_R, LOW);
    digitalWrite(LED_G, HIGH);
    digitalWrite(LED_B, LOW);
  }
  else if (C <= 75) { // Hot
    digitalWrite(LED_R, HIGH);
    digitalWrite(LED_G, LOW);
    digitalWrite(LED_B, LOW);
  }
  else { // Something seriously wrong
    digitalWrite(LED_R, HIGH);
    digitalWrite(LED_G, HIGH);
    digitalWrite(LED_B, HIGH);
  }
  
  
  // Output voltage, temperature
  Serial.print("Raw analog reading: ");
  Serial.print((double)V_raw);
  Serial.print(" Voltage (V): ");
  Serial.print((double)V_out);
  Serial.print(" Temperature (°C): ");
  Serial.print((double)C);
  // For reference
  /*Serial.print(" Temperature (°F): ");
  Serial.print(F);
  Serial.print(" s: ");
  Serial.print(s);
  Serial.print(" logR: ");
  Serial.print(logR);*/
  Serial.println();
  delay(500);
  return;
}