1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
|
/*
______ _______ _______ _______ _______ _______ _____ ______
| \ |______ | |______ | | | | |_____/
|_____/ |______ | |______ |_____ | |_____| | \_
______ _ _ _____ ______ _____ __ _ ______ _ _ _______
|_____] | | | | \ | | \ | | ____ \ / ______|
|_____] |_____| __|__ |_____/ __|__ | \_| |_____| \/ |______
Ladue Horton Watkins High School Science Olympiad
*/
/*
TODO
- Numerical precision
*/
#include <curveFitting.h>
#include <detectorBuilding.h>
const bool DEBUG = 0; // Debug mode
const int n = 5; // Number of data points
const int m = 1; // Number of segments
const int deg = 3; // Regression degree
ld data[2 * n] = {
// V T
2.25, 20.4,
3.66, 48.0,
2.95, 32.7,
3.91, 49.4,
4.22, 66.9
}; // Number of data points is (last line number - 30)
ld coeff[m][deg + 1], V[n], T[n];
void setup() {
Serial.begin(9600);
pinMode(LED_R, OUTPUT);
pinMode(LED_G, OUTPUT);
pinMode(LED_B, OUTPUT);
for (int i = 0; i < n; i++) {
V[i] = data[2 * i];
T[i] = data[2 * i + 1];
}
sort(V, n);
sort(T, n);
ld x[n], y[n];
for (int i = 0; i < n; i++) x[i] = log(v2r(V[i])) - 7;
for (int i = 0; i < n; i++) y[i] = 1000 / c2k(T[i]);
if (DEBUG) {
for (int i = 0; i < n; i++) {
Serial.print("{");
Serial.print((double)x[i], 12);
Serial.print(", ");
Serial.print((double)y[i], 12);
Serial.print("},");
Serial.println();
}
}
for (int i = 0; i < m; i++) {
int ret = fitCurve(deg, n/m, x+i*n/m, y+i*n/m, deg + 1, coeff[i]);
if (DEBUG && ret == 0) { // Returned value is 0 if no error
char c = 'A';
Serial.println("Coefficients are:");
for (int j = 0; j <= deg; j++){
Serial.print(c++);
Serial.print(": ");
Serial.print((double)coeff[i][j], 12);
Serial.println();
}
}
}
}
void loop() {
int V_raw = analogRead(THERM); // Read in raw analog value
ld V_out = a2d(V_raw);
int s = 0; // Find correct segment
while (s + 1 < m && V_out < (V[s*n/m-1] + V[s*n/m]) / 2) s++;
ld logR = log(v2r(V_out)) - 7;
ld sum = 0, prod = 1;
for (int i = 0; i <= deg; i++) {
sum += coeff[s][deg - i] * prod;
prod *= logR;
}
ld K = 1000 / sum;
ld C = k2c(K);
ld F = c2f(C);
// LED stuff
if (C <= 30) { // Cold
digitalWrite(LED_R, LOW);
digitalWrite(LED_G, LOW);
digitalWrite(LED_B, HIGH);
}
else if (C <= 50) { // Medium
digitalWrite(LED_R, LOW);
digitalWrite(LED_G, HIGH);
digitalWrite(LED_B, LOW);
}
else if (C <= 75) { // Hot
digitalWrite(LED_R, HIGH);
digitalWrite(LED_G, LOW);
digitalWrite(LED_B, LOW);
}
else { // Something seriously wrong
digitalWrite(LED_R, HIGH);
digitalWrite(LED_G, HIGH);
digitalWrite(LED_B, HIGH);
}
// Output voltage, temperature
Serial.print("Raw analog reading: ");
Serial.print((double)V_raw);
Serial.print(" Voltage (V): ");
Serial.print((double)V_out);
Serial.print(" Temperature (°C): ");
Serial.print((double)C);
//Serial.print(" logR: ");
//Serial.print(logR);
Serial.println();
delay(500);
return;
}
|