diff options
author | Anthony Wang | 2022-07-15 18:48:19 -0500 |
---|---|---|
committer | Anthony Wang | 2022-07-15 18:48:19 -0500 |
commit | 47407b9fb644959b950f8d70cc33eea0bd08932e (patch) | |
tree | 18e546d510f1a1346a11b19b023342f0b2ac867f | |
parent | 354ebba7892380d6935b9c9e0c72624e7fcced83 (diff) |
Use gpt2-large instead of distilgpt2
-rw-r--r-- | bot.py | 7 | ||||
-rw-r--r-- | train.py | 12 |
2 files changed, 11 insertions, 8 deletions
@@ -1,6 +1,7 @@ from argparse import ArgumentParser from random import randint, choice +from torch import float16 from transformers import AutoTokenizer, AutoModelForCausalLM @@ -17,8 +18,8 @@ parser.add_argument('-m', '--model', default='model', args = parser.parse_args() -tokenizer = AutoTokenizer.from_pretrained('distilgpt2') -model = AutoModelForCausalLM.from_pretrained(args.model) +tokenizer = AutoTokenizer.from_pretrained('gpt2-large') +model = AutoModelForCausalLM.from_pretrained(args.model, torch_dtype=float16).to('cuda') if args.input is None: @@ -71,7 +72,7 @@ if args.input is None: # Run the input through the model print(args.input) -inputs = tokenizer.encode(args.input, return_tensors='pt') +inputs = tokenizer.encode(args.input, return_tensors='pt').to('cuda') output = tokenizer.decode(model.generate( inputs, do_sample=True, max_length=150, top_p=0.9)[0]) print(output) @@ -1,6 +1,7 @@ from argparse import ArgumentParser from itertools import chain +from torch import float16 from datasets import load_dataset from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments, default_data_collator @@ -15,13 +16,13 @@ args = parser.parse_args() # Load and tokenize dataset raw_dataset = load_dataset('text', data_files={'train': args.input}, keep_linebreaks=True) -tokenizer = AutoTokenizer.from_pretrained('distilgpt2', use_fast=True) +tokenizer = AutoTokenizer.from_pretrained('gpt2-large', use_fast=True) tokenized_dataset = raw_dataset.map(lambda examples: tokenizer(examples['text']), batched=True, remove_columns='text') # Generate chunks of block_size -block_size = tokenizer.model_max_length +block_size = 256 # tokenizer.model_max_length # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size. def group_texts(examples): @@ -44,8 +45,9 @@ lm_dataset = tokenized_dataset.map(group_texts, batched=True) # Create and train the model -model = AutoModelForCausalLM.from_pretrained('distilgpt2') -trainer = Trainer(model, TrainingArguments(output_dir=args.output), - default_data_collator, lm_dataset['train']) +model = AutoModelForCausalLM.from_pretrained('gpt2-large', + torch_dtype=float16, low_cpu_mem_usage=True).to('cuda') +trainer = Trainer(model, TrainingArguments(output_dir=args.output, per_device_train_batch_size=1, + gradient_accumulation_steps=8), default_data_collator, lm_dataset['train']) trainer.train() trainer.save_model() |