1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
|
#include <iostream>
#include <cmath>
using namespace std;
typedef long long ll;
// DP Gimkit Solver
// Developed by SAMCHOOO
// Initial conditions
ll start = 0, goal = 1e10; // Money status
int MPQ = 0, SB = 0, M = 0; // Upgrade status
int D = 0, R = 0, B1 = 0, B2 = 0; // Power-up status
// DP state: Iteration, upgrade status, power-up status
ll DP[200][1000][9][4] = { 0 };
// Reconstruct paths
int pre[7200000];
int path_hash(int it, int i, int j, int k) {
return 36000 * it + 36 * i + 4 * j + k;
}
// Upgrade values and costs
double val[3][10] = {
{ 1, 5, 50, 100, 500, 2000, 5000, 10000, 250000, 1000000 },
{ 2, 20, 100, 200, 1000, 4000, 10000, 50000, 1000000, 5000000 },
{ 1, 1.5, 2, 3, 5, 8, 12, 18, 30, 100 }
};
ll cost[2][3][10] = {
{ { 0, 10, 100, 1000, 10000, 75000, 300000, 1000000, 10000000, 100000000},
{ 0, 15, 150, 1500, 15000, 115000, 450000, 1500000, 15000000, 200000000 },
{ 0, 50, 300, 2000, 12000, 85000, 700000, 6500000, 65000000, 1000000000 } },
{ { 0, 8, 75, 750, 7500, 56250, 225000, 750000, 7500000, 75000000 },
{ 0, 12, 113, 1125, 11250, 86250, 337500, 1125000, 11250000, 150000000 },
{ 0, 38, 225, 1500, 9000, 63750, 525000, 4875000, 48750000, 750000000 } }
};
// Power-up costs
int pcost[4] = { 20, 50, 250, 1000 };
double pcentcost[4] = { 0.03, 0.06, 0.16, 0.30 };
ll calc_pcost(int i, ll money) { return 5 * ceil((double)(pcentcost[i] * money + pcost[i]) / 5); }
// Utility function for printing the optimal solution
/*string format_int(int x) {
string ret = to_string(x);
int pos = ret.length() - 3;
while (pos > 0) {
ret.insert(pos, ",");
pos -= 3;
}
return ret;
}*/
int main() {
int s = path_hash(0, 100 * MPQ + 10 * SB + M, 2 * D + R, 3 * B1 + B2);
DP[0][100 * MPQ + 10 * SB + M][2 * D + R][3 * B1 + B2] = start;
for (int it = 0; it < 200; it++) {
for (int i = 0; i < 1000; i++) {
MPQ = i / 100, SB = (i / 10) % 10, M = i % 10;
for (int j = 0; j < 4; j++) {
D = j / 2, R = j % 2;
for (int k = 0; k < 9; k++) {
B1 = k / 3, B2 = k % 3;
ll money = DP[it][i][j][k];
ll inc = round((val[0][MPQ] + val[1][SB]) * val[2][M]);
if (money + inc > DP[it + 1][i][j][k]) {
DP[it + 1][i][j][k] = money + inc;
pre[path_hash(it + 1, i, j, k)] = path_hash(it, i, j, k);
}
if (B1 == 1 && 2 * money + inc > DP[it + 1][i][j][k + 3]) {
DP[it + 1][i][j][k + 3] = 2 * money + inc;
pre[path_hash(it + 1, i, j, k + 3)] = path_hash(it, i, j, k);
}
if (B2 == 1 && 5 * money + inc > DP[it + 1][i][j][k + 1]) {
DP[it + 1][i][j][k + 1] = 5 * money + inc;
pre[path_hash(it + 1, i, j, k + 1)] = path_hash(it, i, j, k);
}
if (B1 == 1 && B2 == 1 && 10 * money + inc > DP[it + 1][i][j][k + 4]) {
DP[it + 1][i][j][k + 4] = 10 * money + inc;
pre[path_hash(it + 1, i, j, k + 4)] = path_hash(it, i, j, k);
}
if (MPQ < 9 && money - cost[D][0][MPQ + 1] > DP[it][i + 100][j][k]) {
DP[it][i + 100][j][k] = money - cost[D][0][MPQ + 1];
pre[path_hash(it, i + 100, j, k)] = path_hash(it, i, j, k);
}
if (SB < 9 && money - cost[D][1][SB + 1] > DP[it][i + 10][j][k]) {
DP[it][i + 10][j][k] = money - cost[D][1][SB + 1];
pre[path_hash(it, i + 10, j, k)] = path_hash(it, i, j, k);
}
if (MPQ < 9 && money - cost[D][2][M + 1] > DP[it][i + 1][j][k]) {
DP[it][i + 1][j][k] = money - cost[D][2][M + 1];
pre[path_hash(it, i + 1, j, k)] = path_hash(it, i, j, k);
}
if (B1 == 0 && money - calc_pcost(0, money) > DP[it][i][j][k + 3]) {
DP[it][i][j][k + 3] = money - calc_pcost(0, money);
pre[path_hash(it, i, j, k + 3)] = path_hash(it, i, j, k);
}
if (B2 == 0 && money - calc_pcost(1, money) > DP[it][i][j][k + 1]) {
DP[it][i][j][k + 1] = money - calc_pcost(1, money);
pre[path_hash(it, i, j, k + 1)] = path_hash(it, i, j, k);
}
if (D == 0 && money - calc_pcost(2, money) > DP[it][i][j + 2][k]) {
DP[it][i][j + 2][k] = money - calc_pcost(2, money);
pre[path_hash(it, i, j + 2, k)] = path_hash(it, i, j, k);
}
if (R == 0 && money - calc_pcost(3, money) > DP[it][i][1][0]) {
DP[it][i][1][0] = money - calc_pcost(3, money);
pre[path_hash(it, i, 0, 1)] = path_hash(it, i, j, k);
}
}
}
}
}
// Find and print solution
for (int it = 0; it < 200; it++) {
for (int i = 0; i < 1000; i++) {
for (int j = 0; j < 9; j++) {
for (int k = 0; k < 4; k++) {
if (DP[it][i][j][k] > goal) {
for (int p = path_hash(it, i, j, k); p != s; p = pre[p]) cout << p << endl;
}
}
}
}
}
/*vector<int> output;
for (int i = 999; i != 0; i = pre[i]) output.push_back(i);
output.push_back(0);
reverse(output.begin(), output.end());
for (int i = 1; i < output.size(); i++) {
if (output[i] / 100 != output[i - 1] / 100) {
cout << left << setw(25) << ("Upgrade MPQ to L" + format_int(output[i] / 100 + 1));
cout << left << setw(25) << (" Cost: " + format_int(cost[output[i] / 100][0]));
// cout << left << setw(25) << (" Remainder: " + format_int(rem[output[i]]));
}
else if ((output[i] / 10) % 10 != (output[i - 1] / 10) % 10) {
cout << left << setw(25) << ("Upgrade SB to L" + format_int((output[i] / 10) % 10 + 1));
cout << left << setw(25) << (" Cost: " + format_int(cost[(output[i] / 10) % 10][1]));
// cout << left << setw(25) << (" Remainder: " + format_int(rem[output[i]]));
}
else {
cout << left << setw(25) << ("Upgrade M to L" + format_int(output[i] % 10 + 1));
cout << left << setw(25) << (" Cost: " + format_int(cost[output[i] % 10][2]));
// cout << left << setw(25) << (" Remainder: " + format_int(rem[output[i]]));
}
cout << " Number of questions: " << DP[output[i]] - DP[output[i - 1]] << endl;
}
cout << "Total questions: " << DP[999] + 2 << endl;*/
}
|