aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorTa180m2020-04-30 12:44:50 -0500
committerTa180m2020-04-30 12:44:50 -0500
commit52147720caa2abf82014f7fda404c9499a850a16 (patch)
tree393a39baa2cacb2c1606ae393f73ed9d533ddb8b
parente7527775e2d87ec127b69617bff4dd396f10a2e9 (diff)
Logged more data
-rw-r--r--COVID-19-SEIR.pngbin39490 -> 40300 bytes
-rw-r--r--README.md20
-rw-r--r--SARS-SEIR.pngbin35105 -> 41265 bytes
-rw-r--r--SARS-SIR.pngbin41624 -> 41666 bytes
-rw-r--r--out/COVID-19-ESIR-data.csv3
-rw-r--r--out/COVID-19-Linear-data.csv3
-rw-r--r--out/COVID-19-SEIR-data.csv11
-rw-r--r--out/COVID-19-SEIR-prediction.csv152
-rw-r--r--out/COVID-19-SIR-data.csv3
-rw-r--r--out/SARS-ESIR-data.csv3
-rw-r--r--out/SARS-Linear-data.csv3
-rw-r--r--out/SARS-SEIR-data.csv11
-rw-r--r--out/SARS-SEIR-prediction.csv150
-rw-r--r--out/SARS-SIR-data.csv7
-rw-r--r--out/SARS-SIR-prediction.csv150
-rw-r--r--solver2.py46
16 files changed, 284 insertions, 278 deletions
diff --git a/COVID-19-SEIR.png b/COVID-19-SEIR.png
index d44ed9d..765ea68 100644
--- a/COVID-19-SEIR.png
+++ b/COVID-19-SEIR.png
Binary files differ
diff --git a/README.md b/README.md
index 2ba58f1..a22aa08 100644
--- a/README.md
+++ b/README.md
@@ -1,15 +1,19 @@
# Infectious-Disease-Modeling
-Original code by [JasonXu314](https://github.com/JasonXu314/covid-19-project/) and [Lewuathe](https://github.com/Lewuathe/COVID19-SIR)
+A project to modeling infectious diseases with the SIR model and variations.
+
+![](https://raw.githubusercontent.com/Ta180m/Infectious-Disease-Modeling/master/SARS-ESIR.png)
+
+![](https://raw.githubusercontent.com/Ta180m/Infectious-Disease-Modeling/master/COVID-19-ESIR.png)
+
+## Usage
For SARS in Hong Kong use
-`./solver2.py --country=Hong_Kong --popcountry=20000 --initial=1000 --disease=SARS --start=4/10/03`
+`./solver2.py --country=Hong_Kong --popcountry=20000 --initial=1000 --disease=SARS --start=4/10/03 --mode={SIR,Linear,ESIR,SEIR}`
For COVID-19 in the US use
-`./solver2.py --popcountry=3000000 --initial=100`
-
+`./solver2.py --popcountry=3000000 --initial=100 --mode={SIR,Linear,ESIR,SEIR}`
-## Usage
```
usage: solver2.py [-h] [--mode {SIR,Linear,ESIR,SEIR}]
[--data [{Actual,S,I,R,E} [{Actual,S,I,R,E} ...]]]
@@ -56,4 +60,8 @@ optional arguments:
the population of the model (defaults to 10000)
--initial INITIAL, -I INITIAL
initial infected people (defaults to 1)
-``` \ No newline at end of file
+```
+
+## Credits
+
+Original code by [JasonXu314](https://github.com/JasonXu314/covid-19-project/) and [Lewuathe](https://github.com/Lewuathe/COVID19-SIR) \ No newline at end of file
diff --git a/SARS-SEIR.png b/SARS-SEIR.png
index b0187aa..9e5b74b 100644
--- a/SARS-SEIR.png
+++ b/SARS-SEIR.png
Binary files differ
diff --git a/SARS-SIR.png b/SARS-SIR.png
index d9332e0..1321854 100644
--- a/SARS-SIR.png
+++ b/SARS-SIR.png
Binary files differ
diff --git a/out/COVID-19-ESIR-data.csv b/out/COVID-19-ESIR-data.csv
index e16f0d7..3c6bb37 100644
--- a/out/COVID-19-ESIR-data.csv
+++ b/out/COVID-19-ESIR-data.csv
@@ -1,4 +1,5 @@
Beta: 0.11506079905613333
Gamma: 0.004485002592721715
Mu: 1e-08
-R0: 25.654509698111923 \ No newline at end of file
+R0: 25.654509698111923
+Predicted I: 1266.8145664521824, Actual I: 1320.7366666666667 \ No newline at end of file
diff --git a/out/COVID-19-Linear-data.csv b/out/COVID-19-Linear-data.csv
index b204797..d0469e1 100644
--- a/out/COVID-19-Linear-data.csv
+++ b/out/COVID-19-Linear-data.csv
@@ -1,3 +1,4 @@
Beta: 0.0005306298181865554
Gamma: 0.00121221978960238
-R0: 0.4377340006638624 \ No newline at end of file
+R0: 0.4377340006638624
+Predicted I: 377.76904311879434, Actual I: 1320.7366666666667 \ No newline at end of file
diff --git a/out/COVID-19-SEIR-data.csv b/out/COVID-19-SEIR-data.csv
index 98e5f69..4b2d494 100644
--- a/out/COVID-19-SEIR-data.csv
+++ b/out/COVID-19-SEIR-data.csv
@@ -1,5 +1,6 @@
-Beta: 0.11054937398441604
-Gamma: 1e-08
-Mu: 1e-08
-Sigma: 0.0009697697322082875
-R0: 5527411.7020644825 \ No newline at end of file
+Beta: 0.11054352661813334
+Gamma: 0.001
+Mu: 0.0009999999999999992
+Sigma: 0.005265008086429555
+R0: 46.4494661074415
+Predicted I: 1267.3615656181303, Actual I: 1320.7366666666667 \ No newline at end of file
diff --git a/out/COVID-19-SEIR-prediction.csv b/out/COVID-19-SEIR-prediction.csv
index 216cf0d..5a6f3a1 100644
--- a/out/COVID-19-SEIR-prediction.csv
+++ b/out/COVID-19-SEIR-prediction.csv
@@ -1,78 +1,78 @@
,Actual,S,I,R
1/22/20,0.0033333333333333335,9999.666666666666,0.33333333333333337,0.0
-1/23/20,0.0033333333333333335,9999.627703932636,0.3722960708871821,-7.047500503241619e-09
-1/24/20,0.006666666666666667,9999.584187413606,0.41581259384888014,-1.49152950354593e-08
-1/25/20,0.006666666666666667,9999.535585180327,0.464414831515325,-2.3699210398033534e-08
-1/26/20,0.016666666666666666,9999.481297402239,0.5187026144994259,-3.350731144359509e-08
-1/27/20,0.016666666666666666,9999.420271502591,0.5797285196504275,-4.452958089143598e-08
-1/28/20,0.016666666666666666,9999.35189874109,0.648101287311564,-5.6875709818881055e-08
-1/29/20,0.016666666666666666,9999.275787997143,0.7242120381115329,-7.061590659430941e-08
-1/30/20,0.016666666666666666,9999.191314730966,0.808685311894688,-8.586249552376956e-08
-1/31/20,0.023333333333333334,9999.09762098357,0.9023790677210395,-1.0276991685097948e-07
-2/1/20,0.02666666666666667,9998.99361537678,1.0063846838662542,-1.2153472675732646e-07
-2/2/20,0.02666666666666667,9998.877973113224,1.1220269578216555,-1.4239559736186735e-07
-2/3/20,0.03666666666666667,9998.749135976333,1.2508641062942234,-1.6563331672132827e-07
-2/4/20,0.03666666666666667,9998.605312330348,1.3946877652065937,-1.9157078883010485e-07
-2/5/20,0.03666666666666667,9998.444477120309,1.5555229896970593,-2.205730336202621e-07
-2/6/20,0.03666666666666667,9998.264371872068,1.7356282541195687,-2.5304718696153445e-07
-2/7/20,0.03666666666666667,9998.062504692276,1.9374954520437282,-2.8944250066132573e-07
-2/8/20,0.03666666666666667,9997.836150268393,2.1638498962547996,-3.302503424647093e-07
-2/9/20,0.03666666666666667,9997.582349868684,2.4176503187537017,-3.760041960544277e-07
-2/10/20,0.03666666666666667,9997.29791134222,2.702088870757009,-4.272796610508932e-07
-2/11/20,0.04,9996.979409118876,3.020591122696953,-4.846944530121872e-07
-2/12/20,0.04,9996.623184209333,3.3768160642214227,-5.489084034340606e-07
-2/13/20,0.043333333333333335,9996.225344205073,3.7746561041939612,-6.206234597499338e-07
-2/14/20,0.043333333333333335,9995.781763278394,4.21823707069377,-7.005836853308967e-07
-2/15/20,0.043333333333333335,9995.2878763168,4.71212407662139,-7.89614001491647e-07
-2/16/20,0.043333333333333335,9994.729673252885,5.270327190678028,-8.903154346461404e-07
-2/17/20,0.043333333333333335,9994.101593223397,5.898407276621259,-1.003694924017184e-06
-2/18/20,0.043333333333333335,9993.402844646575,6.597155916258238,-1.1298515769493453e-06
-2/19/20,0.043333333333333335,9992.630113810632,7.369886821656041,-1.2693480407207008e-06
-2/20/20,0.043333333333333335,9991.777564873753,8.222435835141674,-1.4232105025428344e-06
-2/21/20,0.05,9990.836839864092,9.163160929302064,-1.592928689560839e-06
-2/22/20,0.05,9989.797058679776,10.202942206984064,-1.780455868853314e-06
-2/23/20,0.05,9988.644819088899,11.355181901294454,-1.9882088474323683e-06
-2/24/20,0.05,9987.364196729528,12.635804375599937,-2.2190679722436185e-06
-2/25/20,0.05,9985.936745109704,14.063256123527145,-2.476377130166188e-06
-2/26/20,0.05,9984.341495607432,15.658505768962627,-2.7639437480127095e-06
-2/27/20,0.05333333333333334,9982.554957470695,17.445044066052862,-3.0860387925293243e-06
-2/28/20,0.05333333333333334,9980.55111781744,19.448883899204265,-3.4473967703956814e-06
-2/29/20,0.08,9978.30144163559,21.698560283083154,-3.8532157282249365e-06
-3/1/20,0.1,9975.774871783038,24.22513036261579,-4.309157252563754e-06
-3/2/20,0.17666666666666667,9972.937828987646,27.06217341298835,-4.821346469892306e-06
-3/3/20,0.24333333333333335,9969.754211847247,30.24579083964694,-5.396372046624275e-06
-3/4/20,0.3466666666666667,9966.185396829644,33.81460617829759,-6.0412861891068505e-06
-3/5/20,0.5733333333333334,9962.190238272617,37.80976509490626,-6.763604643620727e-06
-3/6/20,0.7233333333333334,9957.725068383907,42.27493538569881,-7.571306696380109e-06
-3/7/20,1.12,9952.743697241232,47.25630697716109,-8.472835173532714e-06
-3/8/20,1.5,9947.197412792282,52.80259192603878,-9.477096441159757e-06
-3/9/20,1.7133333333333334,9941.034980854713,58.96502441933756,-1.0593460405275972e-05
-3/10/20,2.3600000000000003,9934.18467876412,65.81532712971975,-1.183852492577203e-05
-3/11/20,3.6833333333333336,9926.555298283798,73.44470830443369,-1.3233477649315049e-05
-3/12/20,5.19,9918.079803623716,81.92020373762848,-1.4786587842158435e-05
-3/13/20,7.156666666666667,9908.673492617427,91.32651560183623,-1.6510067880203516e-05
-3/14/20,9.523333333333333,9898.232818699395,101.7671904708687,-1.842053697925139e-05
-3/15/20,9.726666666666667,9886.635390904994,113.3646193198174,-2.0539021195002944e-05
-3/16/20,14.356666666666667,9873.739973870519,126.26003752505356,-2.2890953423058815e-05
-3/17/20,20.32,9859.38648783317,140.61352486422825,-2.5506173398919426e-05
-3/18/20,29.576666666666668,9843.396008631062,156.6040055162721,-2.8418927697984978e-05
-3/19/20,46.980000000000004,9825.570767703222,174.42924806139555,-3.1667869735555426e-05
-3/20/20,64.67666666666668,9805.694152089593,194.30586548108883,-3.52960597668305e-05
-3/21/20,85.75,9783.530704431025,216.4693151581218,-3.935096488690971e-05
-3/22/20,112.11333333333334,9758.826122969287,241.17389887654403,-4.3884459030792356e-05
-3/23/20,145.54333333333335,9731.307261547056,268.69276282168505,-4.895282297337746e-05
-3/24/20,179.12,9700.682129607925,299.3178975801538,-5.461674432946389e-05
-3/25/20,219.26000000000002,9666.639892196396,333.3601381398392,-6.094131755375021e-05
-3/26/20,279.4533333333334,9628.850869957887,371.14916388990974,-6.79960439408348e-05
-3/27/20,338.8566666666667,9586.966539138728,413.0334986208137,-7.585483162521576e-05
-3/28/20,404.9266666666667,9540.61953158616,459.38051052427915,-8.459599558129106e-05
-3/29/20,469.6966666666667,9489.423634748338,510.57641219331373,-9.430225762335835e-05
-3/30/20,539.4566666666667,9432.973791674332,567.0262606222051,-0.00010506074640561513
-3/31/20,627.24,9370.837885356395,629.1621728661532,-0.00011696683699850675
-4/1/20,711.2066666666667,9302.453787425597,697.5462773648485,-0.00013016277267359017
-4/2/20,812.0533333333334,9227.237783759485,772.7622883097854,-0.0001447873339664349
-4/3/20,918.6066666666667,9144.626035134926,855.3740449945691,-0.0001609821841327032
-4/4/20,1029.4833333333333,9054.062771173381,945.9373178735826,-0.00017889981322058814
-4/5/20,1123.5500000000002,8955.000290340902,1044.9998085619877,-0.0001987035380708135
-4/6/20,1222.2,8846.898959948136,1153.1011498357243,-0.00022056750231663365
-4/7/20,1320.7366666666667,8729.227216150326,1270.772905631511,-0.0002446766763838338
+1/23/20,0.0033333333333333335,9999.628058431466,0.3722927688032967,-0.0007040034805373606
+1/24/20,0.006666666666666667,9999.584938001008,0.41580288093746404,-0.0014884223964612472
+1/25/20,0.006666666666666667,9999.536778622145,0.4643949136002849,-0.002362641454030979
+1/26/20,0.016666666666666666,9999.482986330127,0.5186678955261851,-0.003337243370338349
+1/27/20,0.016666666666666666,9999.422518891975,0.5796729614406955,-0.0044308317983486455
+1/28/20,0.016666666666666666,9999.354773561969,0.6480179968329275,-0.005654147928952285
+1/29/20,0.016666666666666666,9999.279363006675,0.7240936258593194,-0.007014068137553173
+1/30/20,0.016666666666666666,9999.19566896133,0.8085233757734609,-0.008521589491029108
+1/31/20,0.023333333333333334,9999.102842229846,0.9021636769260926,-0.01019182974773179
+2/1/20,0.02666666666666667,9998.9998026848,1.0061038627651069,-0.012044027357486806
+2/2/20,0.02666666666666667,9998.885239267456,1.121666169835547,-0.014101541461593663
+2/3/20,0.03666666666666667,9998.757609987737,1.2504057377796078,-0.016391851892825736
+2/4/20,0.03666666666666667,9998.615141924243,1.394110609336636,-0.018946559175430318
+2/5/20,0.03666666666666667,9998.455831224253,1.5548017303431279,-0.021801384525128593
+2/6/20,0.03666666666666667,9998.277443103714,1.7347329497327317,-0.024996169849115624
+2/7/20,0.03666666666666667,9998.077511847243,1.936391019536249,-0.02857487774606041
+2/8/20,0.03666666666666667,9997.853340808133,2.16249559488163,-0.03258559150610582
+2/9/20,0.03666666666666667,9997.602002408354,2.4159992339939764,-0.03708051511086861
+2/10/20,0.03666666666666667,9997.320338138541,2.700087398195544,-0.04211597323343945
+2/11/20,0.04,9997.004958558007,3.0181784519057357,-0.04775241123838292
+2/12/20,0.04,9996.652243294737,3.3739236626411095,-0.05405439518173746
+2/13/20,0.043333333333333335,9996.258341045388,3.771207201015371,-0.06109061181101542
+2/14/20,0.043333333333333335,9995.81916957529,4.214146140739382,-0.06893386856520312
+2/15/20,0.043333333333333335,9995.330232492453,4.707275313764636,-0.07766450196990733
+2/16/20,0.043333333333333335,9994.777727674851,5.26451796199655,-0.08753582393778898
+2/17/20,0.043333333333333335,9994.156022615618,5.8915548902340475,-0.0986487878573327
+2/18/20,0.043333333333333335,9993.464353111347,6.589154851454861,-0.11101279335023419
+2/19/20,0.043333333333333335,9992.69946042638,7.3606028127407495,-0.12468257161880995
+2/20/20,0.043333333333333335,9991.855591292804,8.211699955277496,-0.1397581854459973
+2/21/20,0.05,9990.924497910455,9.150763674354904,-0.15638502919535432
+2/22/20,0.05,9989.895437946914,10.188627579366814,-0.1747538288110599
+2/23/20,0.05,9988.755174537511,11.33864149381108,-0.19510064181791373
+2/24/20,0.05,9987.48797628532,12.616671455289586,-0.21770685732133638
+2/25/20,0.05,9986.075617261164,14.041099715508242,-0.24289919600736895
+2/26/20,0.05,9984.497377003609,15.63282474027698,-0.27104971014267376
+2/27/20,0.05333333333333334,9982.730040518976,17.415261209509755,-0.3025757835745336
+2/28/20,0.05333333333333334,9980.747898281325,19.414340017224553,-0.3379401317308519
+2/29/20,0.08,9978.522746232464,21.658508271543386,-0.3776508016201536
+3/1/20,0.1,9976.023885781953,24.17872929469229,-0.4222611718315836
+3/2/20,0.17666666666666667,9973.218123807092,27.008482623001317,-0.4723699525349084
+3/3/20,0.24333333333333335,9970.06977265293,30.183764006904557,-0.5286211854805146
+3/4/20,0.3466666666666667,9966.540650132269,33.743085410940104,-0.5917042439994096
+3/5/20,0.5733333333333334,9962.590079525648,37.72747501375012,-0.6623538330032225
+3/6/20,0.7233333333333334,9958.17488958136,42.180477208080745,-0.741349988984202
+3/7/20,1.12,9953.24941451544,47.14815260078217,-0.8295180800152187
+3/8/20,1.5,9947.765494011675,52.67907801280858,-0.9277288057497628
+3/9/20,1.7133333333333334,9941.672473221593,58.82434647921826,-1.0368981974219467
+3/10/20,2.3600000000000003,9934.90003803527,65.65502898565009,-1.1586181964701436
+3/11/20,3.6833333333333336,9927.357199268354,73.26310949247375,-1.2949824971167454
+3/12/20,5.19,9918.977798145212,81.71514231103055,-1.4468072437029411
+3/13/20,7.156666666666667,9909.678411561374,91.09512544786146,-1.6152851003958362
+3/14/20,9.523333333333333,9899.356963790717,101.50591398054698,-1.802038529797377
+3/15/20,9.726666666666667,9887.892726485457,113.06922005770684,-2.0091197929443516
+3/16/20,14.356666666666667,9875.146318676158,125.92561289900037,-2.239010949308391
+3/17/20,20.32,9860.959706771722,140.23451879512618,-2.494623856795967
+3/18/20,29.576666666666668,9845.156204559402,156.1742211078224,-2.7793001717483943
+3/19/20,46.980000000000004,9827.540473204794,173.94186026986645,-3.0968113489418276
+3/20/20,64.67666666666668,9807.898521251835,193.75343378507532,-3.451358641587265
+3/21/20,85.75,9785.99770462281,215.8437962283053,-3.847573101330547
+3/22/20,112.11333333333334,9761.586726618345,240.46665924545206,-4.290515578252354
+3/23/20,145.54333333333335,9734.395637917414,267.89459155345094,-4.78567672086821
+3/24/20,179.12,9704.13583657733,298.4190189402763,-5.33897697612848
+3/25/20,219.26000000000002,9670.500068033754,332.3502242649422,-5.956766589418368
+3/26/20,279.4533333333334,9633.162425100692,370.0173474575022,-6.645825604557929
+3/27/20,338.8566666666667,9591.778347970492,411.7683855190489,-7.413363863802048
+3/28/20,404.9266666666667,9545.984624213848,457.97019252171475,-8.267021007840462
+3/29/20,469.6966666666667,9495.399388779793,509.0084796086712,-9.214866475797745
+3/30/20,539.4566666666667,9439.622123995714,565.2878149941292,-10.265399505233308
+3/31/20,627.24,9378.225068719315,627.2403987348546,-11.427939928362765
+4/1/20,711.2066666666667,9310.650698204987,695.4303515061353,-12.71637374733341
+4/2/20,812.0533333333334,9236.321441869342,770.4416733410799,-14.144215936599569
+4/3/20,918.6066666666667,9154.67862991096,852.8395994098861,-15.725284954048453
+4/4/20,1029.4833333333333,9065.170950913795,943.1824939167649,-17.47445257061634
+4/5/20,1123.5500000000002,8967.254451847157,1042.021850099939,-19.407643870288563
+4/6/20,1222.2,8860.39253806574,1149.9022902316447,-21.54183725009952
+4/7/20,1320.7366666666667,8744.0559733096,1267.3615656181303,-23.895064420132684
diff --git a/out/COVID-19-SIR-data.csv b/out/COVID-19-SIR-data.csv
index 68fc931..a0805e1 100644
--- a/out/COVID-19-SIR-data.csv
+++ b/out/COVID-19-SIR-data.csv
@@ -1,3 +1,4 @@
Beta: 0.11506051868918243
Gamma: 0.004484787817138545
-R0: 25.65573297570077 \ No newline at end of file
+R0: 25.65573297570077
+Predicted I: 1266.8105911330124, Actual I: 1320.7366666666667 \ No newline at end of file
diff --git a/out/SARS-ESIR-data.csv b/out/SARS-ESIR-data.csv
index 3ec411f..21d4469 100644
--- a/out/SARS-ESIR-data.csv
+++ b/out/SARS-ESIR-data.csv
@@ -1,4 +1,5 @@
Beta: 0.2367418297398915
Gamma: 0.08679182290949222
Mu: 0.10967338538708958
-R0: 1.205006381498899 \ No newline at end of file
+R0: 1.205006381498899
+Predicted I: 934.6265172952101, Actual I: 877.5 \ No newline at end of file
diff --git a/out/SARS-Linear-data.csv b/out/SARS-Linear-data.csv
index 47d9faa..a322350 100644
--- a/out/SARS-Linear-data.csv
+++ b/out/SARS-Linear-data.csv
@@ -1,3 +1,4 @@
Beta: 0.00225573366659839
Gamma: 0.01741524200420521
-R0: 0.12952640371312119 \ No newline at end of file
+R0: 0.12952640371312119
+Predicted I: 946.0965063014658, Actual I: 877.5 \ No newline at end of file
diff --git a/out/SARS-SEIR-data.csv b/out/SARS-SEIR-data.csv
index face094..36fe951 100644
--- a/out/SARS-SEIR-data.csv
+++ b/out/SARS-SEIR-data.csv
@@ -1,5 +1,6 @@
-Beta: 0.01082548864886504
-Gamma: 1e-08
-Mu: 1e-08
-Sigma: 0.0010246938312194157
-R0: 541269.1501908005 \ No newline at end of file
+Beta: 0.025728454417841363
+Gamma: 0.001
+Mu: 0.001
+Sigma: 0.5156784257190153
+R0: 12.83932927130887
+Predicted I: 1009.5304659757634, Actual I: 877.5 \ No newline at end of file
diff --git a/out/SARS-SEIR-prediction.csv b/out/SARS-SEIR-prediction.csv
index fb009fd..b5ab71d 100644
--- a/out/SARS-SEIR-prediction.csv
+++ b/out/SARS-SEIR-prediction.csv
@@ -1,77 +1,77 @@
,Actual,S,I,R
4/10/03,499.0,9500.0,500.0,0.0
-4/11/03,529.5,9494.832776379075,505.16722864414726,-1.0049017893654477e-05
-4/12/03,554.0,9489.615021231453,510.38498886174114,-2.0196708490327354e-05
-4/14/03,595.0,9484.346299922172,515.6537152881966,-3.044403329478051e-05
-4/15/03,616.0,9479.026175635721,520.9738447394818,-4.07919681313532e-05
-4/16/03,634.0,9473.654208751632,526.3458168365376,-5.124149936138442e-05
-4/17/03,648.5,9468.229956265563,531.7700745841634,-6.179360882997584e-05
-4/18/03,679.0,9462.752972916978,537.247063243363,-7.244928711449601e-05
-4/19/03,679.0,9457.222811208285,542.7772303122033,-8.320953379882134e-05
-4/21/03,701.0,9451.639021404832,548.3610255258131,-9.407535747333604e-05
-4/22/03,717.0,9446.001151534903,553.9989008563845,-0.00010504777573493214
-4/23/03,729.0,9440.30874738973,559.6913105131715,-0.00011612781518700943
-4/24/03,744.0,9434.561352523486,565.4387109424914,-0.00012731651143947555
-4/25/03,755.0,9428.758508253284,571.2415608277236,-0.0001386149091087459
-4/26/03,763.5,9422.899753659178,577.1003210893101,-0.00015002406181774378
-4/28/03,778.5,9416.984625584166,583.0154548847557,-0.0001615450321959002
-4/29/03,786.0,9411.012658634185,588.9874276086279,-0.00017317889187915396
-4/30/03,794.5,9404.983385178115,595.0167068925563,-0.00018492672150995177
-5/1/03,800.0,9398.896335347777,601.1037626052337,-0.0001967896107372481
-5/2/03,805.5,9392.751037037935,607.249066852415,-0.00020876865821650522
-5/3/03,810.5,9386.547015906293,613.4530939769181,-0.00022086497160969318
-5/5/03,818.5,9380.283795373496,619.7163205586231,-0.0002330796675852899
-5/6/03,823.0,9373.960896623134,626.039225414473,-0.000245413871818281
-5/7/03,827.0,9367.577838601735,632.4222895984733,-0.00025786871899016007
-5/8/03,830.5,9361.134138018771,638.865996401692,-0.00027044535278892835
-5/9/03,833.5,9354.629309346652,645.3708313522598,-0.000283144925909095
-5/10/03,837.0,9348.062864820737,651.93728221537,-0.00029596860005167694
-5/12/03,841.5,9341.434314439317,658.5658389932785,-0.0003089175459241988
-5/13/03,844.5,9334.743165963633,665.2569939253037,-0.00032199294324069313
-5/14/03,849.0,9327.988924917861,672.0112414878266,-0.0003351959807217004
-5/15/03,851.5,9321.171094589126,678.8290783942911,-0.00034852785609426867
-5/16/03,853.0,9314.289176027485,685.711003595203,-0.00036198977609195373
-5/17/03,855.0,9307.342668079065,692.6575182450104,-0.00037558295647366943
-5/19/03,857.0,9300.331096358257,699.669096729908,-0.0003893086386532089
-5/20/03,859.0,9293.253974616735,706.746225298807,-0.00040316806803868246
-5/21/03,859.5,9286.110787611027,713.8894191957595,-0.00041716248377624443
-5/22/03,861.0,9278.90101970139,721.0991940611004,-0.0004312931348895171
-5/23/03,862.0,9271.6241548518,728.3760659314465,-0.0004455612802795907
-5/24/03,862.0,9264.279676629953,735.7205512396977,-0.00045996818872502313
-5/26/03,863.0,9256.86706820727,743.1331668150356,-0.0004745151388818404
-5/27/03,864.0,9249.385812358894,750.6144298829247,-0.0004892034192835363
-5/28/03,865.0,9241.83539146369,758.1648580651118,-0.0005040343283410723
-5/29/03,866.0,9234.215287504241,765.7849693796263,-0.0005190091743428781
-5/30/03,868.0,9226.52498206686,773.47528224078,-0.0005341292754548511
-5/31/03,869.5,9218.763956341574,781.2363154591667,-0.0005493959597203565
-6/2/03,873.0,9210.931691122136,789.0685882416632,-0.0005648105650602276
-6/3/03,873.5,9203.027666806023,796.9726201914284,-0.0005803744392727652
-6/4/03,874.0,9195.05136339443,804.9489313079039,-0.0005960889400337384
-6/5/03,874.0,9187.002260492278,812.9980419868135,-0.0006119554348963837
-6/6/03,875.0,9178.879837308206,821.1204730201633,-0.0006279753012914061
-6/9/03,876.5,9170.68357265458,829.3167455962424,-0.0006441499265269778
-6/10/03,877.0,9162.41294494748,837.5873812996218,-0.0006604807077887393
-6/11/03,877.0,9154.067432206719,845.932902111155,-0.000676969052139799
-6/12/03,877.5,9145.646512055824,854.3538304079781,-0.000693616376520733
-6/13/03,877.5,9137.14966172205,862.8506889635098,-0.000710424107749585
-6/16/03,877.5,9128.576358036364,871.4240009474506,-0.0007273936825218674
-6/17/03,877.5,9119.926077433467,880.0742899257843,-0.0007445265474105596
-6/18/03,877.5,9111.198295951777,888.8020798607764,-0.0007618241588661093
-6/19/03,877.5,9102.392489233433,897.6078951109752,-0.0007792879832164324
-6/20/03,877.5,9093.508132524295,906.4922604312112,-0.0007969194966669115
-6/23/03,877.5,9084.544700673952,915.4557009725976,-0.0008147201853003983
-6/24/03,877.5,9075.501668135706,924.4987422825302,-0.0008326915450772123
-6/25/03,877.5,9066.378508966589,933.6219103046864,-0.0008508350818351401
-6/26/03,877.5,9057.174696827351,942.8257313790269,-0.0008691523112894365
-6/27/03,877.5,9047.88970498246,952.1107322417946,-0.0008876447590328244
-6/30/03,877.5,9038.523006300118,961.4774400255145,-0.0009063139605354945
-7/1/03,877.5,9029.074073252237,970.9263822589945,-0.0009251614611451053
-7/2/03,877.5,9019.542377914458,980.4580868673245,-0.0009441888160867831
-7/3/03,877.5,9009.927391966141,990.0730821718771,-0.000963397590463122
-7/4/03,877.5,9000.228586690371,999.7718968903075,-0.0009827893592541843
-7/7/03,877.5,8990.445432973953,1009.5550601365533,-0.0010023657073175002
-7/8/03,877.5,8980.577401307413,1019.4231014208335,-0.0010221282293880673
-7/9/03,877.5,8970.623961785,1029.3765506496513,-0.0010420785300783515
-7/10/03,877.5,8960.58458410469,1039.4159381257912,-0.001062218223878286
-7/11/03,877.5,8950.458737568173,1049.5417945483198,-0.0010825489351552733
-8/7/03,877.5,8940.245891080865,1059.7546510125874,-0.0011030722981541815
+4/11/03,529.5,9488.143162506229,512.2324397544037,-0.882177497810673
+4/12/03,554.0,9476.015278199106,524.4828138338451,-1.5242471976604952
+4/14/03,595.0,9463.61746158547,536.7439192089786,-1.9198867883573725
+4/15/03,616.0,9450.951000086068,549.0082565721088,-2.0626387148311833
+4/16/03,634.0,9438.017324845176,561.2680305425346,-1.945883524120254
+4/17/03,648.5,9424.818074365996,573.5154325046063,-1.5631820185401133
+4/18/03,679.0,9411.355094510642,585.742640607726,-0.9082752556834991
+4/19/03,679.0,9397.630438500142,597.9418197663479,0.024915451579647783
+4/21/03,701.0,9383.64636691444,610.1051216599773,1.2422885351021797
+4/22/03,717.0,9369.405347692396,622.2246847331717,2.749562171459745
+4/23/03,729.0,9354.910056131788,634.2926341955401,4.552274281950783
+4/24/03,744.0,9340.163374889304,646.3010820217438,6.655782532596537
+4/25/03,755.0,9325.168393980548,658.2421269514947,9.065264334141032
+4/26/03,763.5,9309.928410780045,670.1078544895577,11.785716842051098
+4/28/03,778.5,9294.446930021231,681.8903369057483,14.821956956516354
+4/29/03,786.0,9278.727663796457,693.5816332349345,18.17862132244922
+4/30/03,794.5,9262.77453155699,705.1737892770357,21.860166329484905
+5/1/03,800.0,9246.591660113014,716.6588375970233,25.87086811198139
+5/2/03,805.5,9230.183383633626,728.02879752492,30.21482254901951
+5/3/03,810.5,9213.554213017553,739.2758026679536,34.895845894572574
+5/5/03,818.5,9196.708494944753,750.3934275690843,39.91646096476348
+5/6/03,823.0,9179.651049507724,761.3738491927566,45.28014979518666
+5/7/03,827.0,9162.38694744813,772.2088625477973,50.99054403665055
+5/8/03,830.5,9144.921373268242,782.8904680085917,57.050963556445716
+5/9/03,833.5,9127.25962523094,793.4108713150828,63.46441643834487
+5/10/03,837.0,9109.407115359705,803.7624835727712,70.23359898260281
+5/12/03,841.5,9091.369369438624,813.9379212527157,77.36089570595655
+5/13/03,844.5,9073.152027012395,823.9300061915324,84.84837934162513
+5/14/03,849.0,9054.760841386316,833.7317655913955,92.69781083930978
+5/15/03,851.5,9036.201679626292,843.336432020037,100.91063936519383
+5/16/03,853.0,9017.480522558837,852.7374434107469,109.48800230194281
+5/17/03,855.0,8998.603464771062,861.9284430623726,118.43072524870426
+5/19/03,857.0,8979.576714610694,870.9032796393195,127.73932202110795
+5/20/03,859.0,8960.406594186059,879.6560071715509,137.4139946512657
+5/21/03,859.5,8941.09953936609,888.1808850545877,147.45463338777157
+5/22/03,861.0,8921.66209978033,896.4723780495091,157.8608166957016
+5/23/03,862.0,8902.100938818916,904.5251562829511,168.6318112566142
+5/24/03,862.0,8882.422833632607,912.3340952471086,179.7665719685495
+5/26/03,863.0,8862.634675132751,919.8942757997339,191.26374194603017
+5/27/03,864.0,8842.743467991315,927.2009841641368,203.12165252006082
+5/28/03,865.0,8822.756330640865,934.2497119291854,215.33832323812825
+5/29/03,866.0,8802.68049527457,941.0361560493054,227.91146186420127
+5/30/03,868.0,8782.523307846213,947.5562188444801,240.83846437873098
+5/31/03,869.5,8762.292228070175,953.8060080002509,254.11641497865054
+6/2/03,873.0,8741.994225190268,959.7828121453628,267.74165257842384
+6/3/03,873.5,8721.634677655516,965.486554667193,281.7093184069934
+6/4/03,874.0,8701.22087437266,970.9139958690845,296.01601839864543
+6/5/03,874.0,8680.760203316595,976.0619740683078,310.6581926345152
+6/6/03,875.0,8660.25994557464,980.9277531571834,325.6319518728658
+6/9/03,876.5,8639.727275346546,985.5090226030803,340.9330775490888
+6/10/03,877.0,8619.16925994449,989.8038974484182,356.557021775704
+6/11/03,877.0,8598.59285979308,993.810918310665,372.49890734235925
+6/12/03,877.5,8578.004928429345,997.529051382339,388.7535277158306
+6/13/03,877.5,8557.412212502752,1000.9576884310075,405.31534704002274
+6/16/03,877.5,8536.821351775183,1004.0966467992869,422.17850013596797
+6/17/03,877.5,8516.238879120961,1006.9461694048438,439.3367925018271
+6/18/03,877.5,8495.671220526829,1009.5069247403937,456.7837003128893
+6/19/03,877.5,8475.124695091961,1011.7800068737015,474.51237042157175
+6/20/03,877.5,8454.605515027957,1013.766935447582,492.5156203574199
+6/23/03,877.5,8434.119785658848,1015.4696556798989,510.78593832710726
+6/24/03,877.5,8413.67350542109,1016.8905383635657,529.3154832144359
+6/25/03,877.5,8393.272565863565,1018.0323798665452,548.096084580336
+6/26/03,877.5,8372.92275164759,1018.8984021318494,567.1192426628656
+6/27/03,877.5,8352.629740546905,1019.49225267754,586.3761283772112
+6/30/03,877.5,8332.399103447675,1019.8180045967284,605.8575833156879
+7/1/03,877.5,8312.236304348502,1019.8801565575749,625.5541197477385
+7/2/03,877.5,8292.146700360407,1019.6836328032894,645.455920619934
+7/3/03,877.5,8272.135541706844,1019.2337831521314,665.5528395559738
+7/4/03,877.5,8252.207971723692,1018.5363829974096,685.8344008566856
+7/7/03,877.5,8232.369026859264,1017.5976333074824,706.2897995000255
+7/8/03,877.5,8212.623636674289,1016.4241606257575,726.9079011410773
+7/9/03,877.5,8192.976623841936,1015.0230170706917,747.6772421120531
+7/10/03,877.5,8173.432704147797,1013.401680335792,768.5860294222934
+7/11/03,877.5,8153.996486489892,1011.5680536896141,789.6221407582674
+8/7/03,877.5,8134.672472878669,1009.5304659757634,810.7731244835715
diff --git a/out/SARS-SIR-data.csv b/out/SARS-SIR-data.csv
index b8e7f28..d6e9dfa 100644
--- a/out/SARS-SIR-data.csv
+++ b/out/SARS-SIR-data.csv
@@ -1,3 +1,4 @@
-Beta: 0.031662971068960946
-Gamma: 0.018519768809938723
-R0: 1.7096850070811285 \ No newline at end of file
+Beta: 0.031663066064741584
+Gamma: 0.018520041050816886
+R0: 1.7096650044058612
+Predicted I: 1006.3748700651734, Actual I: 877.5 \ No newline at end of file
diff --git a/out/SARS-SIR-prediction.csv b/out/SARS-SIR-prediction.csv
index 9a3a4c5..ba1c85f 100644
--- a/out/SARS-SIR-prediction.csv
+++ b/out/SARS-SIR-prediction.csv
@@ -1,77 +1,77 @@
,Actual,S,I,R
4/10/03,499.0,9500.0,500.0,0.0
-4/11/03,529.5,9484.884979595565,505.80148109959003,9.313539304844733
-4/12/03,554.0,9469.619417390539,511.64566678773895,18.73491582172085
-4/14/03,595.0,9454.202845099702,517.5322376669819,28.26491723331429
-4/15/03,616.0,9438.634815392412,523.4608571171718,37.90432749041551
-4/16/03,634.0,9422.91490886804,529.4311682856298,47.65392284632816
-4/17/03,648.5,9407.04273428322,535.4427939878531,57.51447172892478
-4/18/03,679.0,9391.017928551839,541.4953367075137,67.48673474064691
-4/19/03,679.0,9374.840156745033,547.5883785964601,77.57146465850494
-4/21/03,701.0,9358.509112091206,553.7214814747153,87.76940643407822
-4/22/03,717.0,9342.024515976005,559.894186830479,98.08129719351507
-4/23/03,729.0,9325.38611794234,566.1060158201255,108.5078662375327
-4/24/03,744.0,9308.593695690377,572.3564692682052,119.04983504141725
-4/25/03,755.0,9291.647076432952,578.6450722781254,129.70785128892103
-4/26/03,763.5,9274.546254563056,584.9716358776624,140.48210955928025
-4/28/03,778.5,9257.291082520527,591.3356116538148,151.37330582565713
-4/29/03,786.0,9239.88140918478,597.736342445242,162.38224836997682
-4/30/03,794.5,9222.31712462584,604.173152454918,173.50972291924018
-5/1/03,800.0,9204.598160104344,610.6453472501305,184.75649264552393
-5/2/03,805.5,9186.724488071535,617.1522137624829,196.1232981659804
-5/3/03,810.5,9168.696122169269,623.6930202878924,207.61085754283772
-5/5/03,818.5,9150.513117230008,630.2670164865909,219.21986628339982
-5/6/03,823.0,9132.175569276827,636.8734333831252,230.95099734004629
-5/7/03,827.0,9113.68361552341,643.5114833663562,242.80490111023255
-5/8/03,830.5,9095.03743437405,650.1803601894597,254.78220543648973
-5/9/03,833.5,9076.237245423648,656.8792389699258,266.8835156064247
-5/10/03,837.0,9057.283309457718,663.6072761895597,279.10941435272
-5/12/03,841.5,9038.175928452385,670.3636096944803,291.4604618531342
-5/13/03,844.5,9018.915445574376,677.1473586951217,303.9371957305013
-5/14/03,849.0,8999.502245181035,683.9576237662324,316.5401310527311
-5/15/03,851.5,8979.936752820313,690.7934868468756,329.26976033280937
-5/16/03,853.0,8960.219435230772,697.6540112404288,342.1265535287975
-5/17/03,855.0,8940.350800341583,704.5382416145842,355.11095804383234
-5/19/03,857.0,8920.331397272523,711.4452040013485,368.223398726127
-5/20/03,859.0,8900.161816333986,718.3739057970432,381.46427786896993
-5/21/03,859.5,8879.84268902697,725.3233357623042,394.8339752107257
-5/22/03,861.0,8859.374688043083,732.2924640220818,408.3328479348343
-5/23/03,862.0,8838.758527264547,739.2802420656409,421.96123066981147
-5/24/03,862.0,8817.994961764189,746.2856027465614,435.719435489249
-5/26/03,863.0,8797.084787805446,753.3074602827372,449.60775191181426
-5/27/03,864.0,8776.028842842372,760.3447102563772,463.62644690125006
-5/28/03,865.0,8754.828005519617,767.3962296140044,477.77576486637554
-5/29/03,866.0,8733.483195672457,774.4608766664569,492.05592766108515
-5/30/03,868.0,8711.995374326762,781.5374910888871,506.46713458434937
-5/31/03,869.5,8690.365543699023,788.6248939207617,521.0095623802142
-6/2/03,873.0,8668.594747196334,795.7218875658625,535.6833652378015
-6/3/03,873.5,8646.684069416404,802.8272557922855,550.4886747913089
-6/4/03,874.0,8624.634636147548,809.9397637324413,565.4256001200094
-6/5/03,874.0,8602.447614368692,817.0581578830551,580.4942277482527
-6/6/03,875.0,8580.12421224937,824.1811661051668,595.6946216454631
-6/9/03,876.5,8557.665679149726,831.3074976241306,611.0268232261413
-6/10/03,877.0,8535.073305620519,838.4358430296157,626.490851349864
-6/11/03,877.0,8512.34842340311,845.5648742756055,642.0867023212829
-6/12/03,877.5,8489.492405429475,852.6932446803977,657.8143498901256
-6/13/03,877.5,8466.506665822197,859.8195889266052,673.6737452511964
-6/16/03,877.5,8443.392659894469,866.9425230611552,689.664817044374
-6/17/03,877.5,8420.151884150095,874.0606444952892,705.7874713546134
-6/18/03,877.5,8396.78587628349,881.1725320045638,722.0415917119461
-6/19/03,877.5,8373.296215179671,888.2767457288496,738.4270390914784
-6/20/03,877.5,8349.684520914274,895.3718271723321,754.943651913392
-6/23/03,877.5,8325.952454753542,902.4562992035115,771.5912460429457
-6/24/03,877.5,8302.101719154323,909.528666055202,788.3696147904728
-6/25/03,877.5,8278.134057764082,916.587413324533,805.2785289113833
-6/26/03,877.5,8254.051255420887,923.6310079729482,822.3177366061623
-6/27/03,877.5,8229.855138153422,930.6578983262057,839.4869635203708
-6/30/03,877.5,8205.547573180975,937.6665140743783,856.7859127446457
-7/1/03,877.5,8181.130468913446,944.6552662718534,874.214264814699
-7/2/03,877.5,8156.605774951346,951.622547337333,891.7716777113201
-7/3/03,877.5,8131.9754820857925,958.5667310538335,909.4577868603722
-7/4/03,877.5,8107.241622298517,965.4861725686861,927.2722051327953
-7/7/03,877.5,8082.406268761857,972.3792083935365,945.2145228446052
-7/8/03,877.5,8057.47153583876,979.2441564043446,963.2843077568929
-7/9/03,877.5,8032.439579082788,986.0793158413854,981.4811050758253
-7/10/03,877.5,8007.312595238105,992.8829673092482,999.8044374526455
-7/11/03,877.5,7982.09282223949,999.6533727768367,1018.2538049836719
-8/7/03,877.5,7956.78253921233,1006.3887755773695,1036.8286852102988
+4/11/03,529.5,9484.884935661017,505.8013889745629,9.313675364418977
+4/12/03,554.0,9469.619331935233,511.64548026583697,18.73518779892931
+4/14/03,595.0,9454.202720592919,517.5319544515797,28.2653249555004
+4/15/03,616.0,9438.63465435934,523.4604748870292,37.904870753629005
+4/16/03,634.0,9422.914713889772,529.4306846954333,47.65460141479498
+4/17/03,648.5,9407.042507996706,535.4422066687719,57.51528533452196
+4/18/03,679.0,9391.017673649865,541.4946432677566,67.4876830823774
+4/19/03,679.0,9374.839875976195,547.5875766218314,77.57254740197249
+4/21/03,701.0,9358.508808259865,553.7205685291723,87.7706232109622
+4/22/03,717.0,9342.024191942268,559.8931604566872,98.08264760104534
+4/23/03,729.0,9325.385776622019,566.1048735400161,108.50934983796446
+4/24/03,744.0,9308.593340054962,572.355208583531,119.05145136150593
+4/25/03,755.0,9291.646709504466,578.6436906838157,129.7095998117178
+4/26/03,763.5,9274.545879350027,584.9701308897737,140.4839897601985
+4/28/03,778.5,9257.290702079748,591.3339807595457,151.37531716070546
+4/29/03,786.0,9239.88102664348,597.7345831059315,162.38439025058838
+4/30/03,794.5,9222.316743180114,604.1712621075803,173.51199471230524
+5/1/03,800.0,9204.597783017587,610.6433233089908,184.75889367342236
+5/2/03,805.5,9186.724118672875,617.1500536205109,196.1258277066142
+5/3/03,810.5,9168.695763851998,623.6907213183381,207.61351482966353
+5/5/03,818.5,9150.512773450018,630.2645760445189,219.2226505054614
+5/6/03,823.0,9132.175243551043,636.8708488069497,230.95390764200704
+5/7/03,827.0,9113.683311428216,643.5087519793758,242.80793659240803
+5/8/03,830.5,9095.037155543727,650.1774793013924,254.78536515488017
+5/9/03,833.5,9076.236995548808,656.8762058784436,266.8867985727474
+5/10/03,837.0,9057.283092283735,663.604088181823,279.11281953444217
+5/12/03,841.5,9038.175747777821,670.360264048674,291.4639881735049
+5/13/03,844.5,9018.915305249426,677.1438526819887,303.9408420685844
+5/14/03,849.0,8999.502149105952,683.9539546506091,316.543896243438
+5/15/03,851.5,8979.936704943842,690.7896518892264,329.27364316693064
+5/16/03,853.0,8960.219439548582,697.6500076983813,342.13055275303606
+5/17/03,855.0,8940.3508608947,704.5340667444635,355.1150723608361
+5/19/03,857.0,8920.331518145767,711.4408550597127,368.22762679452086
+5/20/03,859.0,8900.162001654393,718.3693800422175,381.46861830338855
+5/21/03,859.5,8879.842942962237,725.3186304559161,394.838426581846
+5/22/03,861.0,8859.375014799996,732.287576430596,408.33740876940783
+5/23/03,862.0,8838.758931087408,739.275169461894,421.96589945069735
+5/24/03,862.0,8817.995446933257,746.2803424112967,435.72421065544575
+5/26/03,863.0,8797.085358635368,753.3020095061394,449.6126318584927
+5/27/03,864.0,8776.029503680607,760.3390663396073,463.63142997978605
+5/28/03,865.0,8754.828760744882,767.390389870735,477.780849384382
+5/29/03,866.0,8733.484049693148,774.4548384244063,492.0611118824449
+5/30/03,868.0,8711.996331579398,781.5312516913542,506.4724167292473
+5/31/03,869.5,8690.366608646667,788.6184507281615,521.0149406251701
+6/2/03,873.0,8668.595924327037,795.7152379572603,535.6888377157028
+6/3/03,873.5,8646.685363241626,802.8203971669316,550.4942395914422
+6/4/03,874.0,8624.6360512006,809.9326935113064,565.4312552880943
+6/5/03,874.0,8602.449155203163,817.050873510365,580.499971286473
+6/6/03,875.0,8580.125883437562,824.1736650499366,595.7004515125006
+6/9/03,876.5,8557.667485281094,831.2997773817003,611.0327373372073
+6/10/03,877.0,8535.075251300084,838.4279011231844,626.4968475767317
+6/11/03,877.0,8512.350513249914,845.5567082577664,642.0927784923211
+6/12/03,877.5,8489.494644074995,852.6848521346736,657.8205037903302
+6/13/03,877.5,8466.509057908796,859.8109674689823,673.679974622223
+6/16/03,877.5,8443.395210073812,866.9336703416184,689.6711195845708
+6/17/03,877.5,8420.154597081591,874.051558199357,705.7938447190535
+6/18/03,877.5,8396.788756632719,881.1632098548229,722.0480335124596
+6/19/03,877.5,8373.299267616825,888.2671854864899,738.4335468966855
+6/20/03,877.5,8349.687750112584,895.3620266386816,754.9502232487357
+6/23/03,877.5,8325.955865387707,902.4462562215705,771.5978783907235
+6/24/03,877.5,8302.105315898953,909.5183785111789,788.3763055898696
+6/25/03,877.5,8278.137845292118,916.5768791493783,805.2852755585043
+6/26/03,877.5,8254.055238402047,923.6202251438895,822.3245364540645
+6/27/03,877.5,8229.859321252621,930.646864868283,839.4938138790968
+6/30/03,877.5,8205.551961056768,937.6552280619782,856.792810881255
+7/1/03,877.5,8181.135066216455,944.6437258302445,874.2212079533022
+7/2/03,877.5,8156.610586322692,951.6107506442,891.7786630331084
+7/3/03,877.5,8131.980512155535,958.5546763408129,909.4648115036531
+7/4/03,877.5,8107.246875684078,965.4738581229003,927.2792661930238
+7/7/03,877.5,8082.411750066457,972.3666325591284,945.2216173744155
+7/8/03,877.5,8057.477249649856,979.2313175840138,963.2914327661321
+7/9/03,877.5,8032.445529970494,986.0662124979214,981.4882575315858
+7/10/03,877.5,8007.318787753639,992.8695979670663,999.8116142792966
+7/11/03,877.5,7982.099260913596,999.6397360235123,1018.2610030628935
+8/7/03,877.5,7956.7892285537155,1006.3748700651734,1036.8359013811128
diff --git a/solver2.py b/solver2.py
index 4074988..4f010ae 100644
--- a/solver2.py
+++ b/solver2.py
@@ -18,7 +18,7 @@ parser.add_argument('--disease', '-D', dest = 'disease', default = 'COVID-19', h
parser.add_argument('--out', '-o', dest = 'out', default = None, help = 'the name of the graph and csv files; defaults to the name of the disease')
parser.add_argument('--start', '-s', dest = 'start', default = '1/22/20', help = 'the date where the data starts (defaults to the start date of COVID-19 (1/22/20))')
parser.add_argument('--end', '-e', dest = 'end', default = None, help = 'the date where the data stops (defaults to whereever the input data ends)')
-parser.add_argument('--incubation', '-i', dest = 'incubation_period', default = None, help = 'the incubation period of the disease (only applicable if using SIRE model; ignored otherwise); none by default')
+parser.add_argument('--incubation', '-i', dest = 'incubation_period', default = None, help = 'the incubation period of the disease (only applicable if using SEIR model; ignored otherwise); none by default')
parser.add_argument('--predict', '-p', dest = 'prediction_range', default = None, help = 'the number of days to predict the course of the disease (defaults to None, meaning the model will not predict beyond the given data)')
parser.add_argument('--country', '-c', dest = 'country', default = 'US', help = 'the country that is being modeled (defaults to US)')
parser.add_argument('--popcountry', '-pc', dest = 'popcountry', default = '3328200000', help = 'the population of the country (defaults to US population)')
@@ -72,20 +72,6 @@ class Learner(object):
return out
- def load_exposed(self, country):
- """
- Load data for exposed persons
- """
- df = pd.read_csv(f'{args.folder}/{args.disease}-Exposed.csv')
- country_df = df[df['Country/Region'] == country]
-
- if args.end != None:
- out = country_df.iloc[0].loc[args.start:args.end]
- else:
- out = country_df.iloc[0].loc[args.start:]
-
- return out
-
def extend_index(self, index, new_size):
values = index.values
@@ -131,7 +117,7 @@ class Learner(object):
extended_actual = np.concatenate((data.values.flatten(), [0] * (size - len(data.values))))
if args.mode == 'SEIR':
- result = solve_ivp(model, [0, size], [S_0,I_0,R_0,E_0], t_eval=np.arange(0, size, 1))
+ result = solve_ivp(model, [0, size], [S_0,I_0,R_0,E_0], t_eval=np.arange(0, size, 1), vectorized=True)
else:
result = solve_ivp(model, [0, size], [S_0,I_0,R_0], t_eval=np.arange(0, size, 1), vectorized=True)
@@ -150,10 +136,10 @@ class Learner(object):
if args.mode == 'Linear':
optimal = minimize(
loss_linear,
- [0.001, 0.001],
+ [0.01, 0.01],
args=(confirmed_data, recovered_data),
method='L-BFGS-B',
- bounds=[(0.00000001, 0.4), (0.00000001, 0.4)]
+ bounds=[(0.001, 1.0), (0.001, 1.0)]
)
beta, gamma = optimal.x
print(f'Beta: {beta}, Gamma: {gamma}, R0: {beta/gamma}')
@@ -161,14 +147,15 @@ class Learner(object):
print(f'Predicted I: {prediction.y[1][-1] * int(args.popmodel)}, Actual I: {extended_actual[-1] * correction_factor}')
df = compose_df(prediction, extended_actual, correction_factor, new_index)
with open(f'out/{args.disease}-{args.mode}-data.csv', 'w+') as file:
- file.write(f'Beta: {beta}\nGamma: {gamma}\nR0: {beta/gamma}')
+ file.write(f'Beta: {beta}\nGamma: {gamma}\nR0: {beta/gamma}\n')
+ file.write(f'Predicted I: {prediction.y[1][-1] * int(args.popmodel)}, Actual I: {extended_actual[-1] * correction_factor}')
elif args.mode == 'SIR':
optimal = minimize(
loss_sir,
- [0.001, 0.001],
+ [0.01, 0.01],
args=(confirmed_data, recovered_data),
method='L-BFGS-B',
- bounds=[(0.00000001, 0.4), (0.00000001, 0.4)]
+ bounds=[(0.001, 1.0), (0.001, 1.0)]
)
beta, gamma = optimal.x
print(f'Beta: {beta}, Gamma: {gamma}, R0: {beta/gamma}')
@@ -176,14 +163,15 @@ class Learner(object):
print(f'Predicted I: {prediction.y[1][-1] * int(args.popmodel)}, Actual I: {extended_actual[-1] * correction_factor}')
df = compose_df(prediction, extended_actual, correction_factor, new_index)
with open(f'out/{args.disease}-{args.mode}-data.csv', 'w+') as file:
- file.write(f'Beta: {beta}\nGamma: {gamma}\nR0: {beta/gamma}')
+ file.write(f'Beta: {beta}\nGamma: {gamma}\nR0: {beta/gamma}\n')
+ file.write(f'Predicted I: {prediction.y[1][-1] * int(args.popmodel)}, Actual I: {extended_actual[-1] * correction_factor}')
elif args.mode == 'ESIR':
optimal = minimize(
loss_esir,
- [0.001, 0.001, 0.001],
+ [0.01, 0.01, 0.01],
args=(confirmed_data, recovered_data),
method='L-BFGS-B',
- bounds=[(0.00000001, 0.4), (0.00000001, 0.4), (0.00000001, 0.4)]
+ bounds=[(0.001, 1.0), (0.001, 1.0), (0.001, 1.0)]
)
beta, gamma, mu = optimal.x
print(f'Beta: {beta}, Gamma: {gamma}, Mu: {mu} R0: {beta/(gamma + mu)}')
@@ -191,16 +179,17 @@ class Learner(object):
print(f'Predicted I: {prediction.y[1][-1] * int(args.popmodel)}, Actual I: {extended_actual[-1] * correction_factor}')
df = compose_df(prediction, extended_actual, correction_factor, new_index)
with open(f'out/{args.disease}-{args.mode}-data.csv', 'w+') as file:
- file.write(f'Beta: {beta}\nGamma: {gamma}\nMu: {mu}\nR0: {beta/(gamma + mu)}')
+ file.write(f'Beta: {beta}\nGamma: {gamma}\nMu: {mu}\nR0: {beta/(gamma + mu)}\n')
+ file.write(f'Predicted I: {prediction.y[1][-1] * int(args.popmodel)}, Actual I: {extended_actual[-1] * correction_factor}')
elif args.mode == 'SEIR':
# exposed_data = self.load_exposed(self.country)
optimal = minimize(
loss_seir,
- [0.001, 0.001, 0.001, 0.001],
+ [0.01, 0.01, 0.01, 0.01],
args=(confirmed_data, recovered_data),
method='L-BFGS-B',
- bounds=[(0.00000001, 0.4), (0.00000001, 0.4), (0.00000001, 0.4), (0.00000001, 0.4)]
+ bounds=[(0.001, 1.0), (0.001, 1.0), (0.001, 1.0), (0.001, 1.0)]
)
beta, gamma, mu, sigma = optimal.x
print(f'Beta: {beta}, Gamma: {gamma}, Mu: {mu}, Sigma: {sigma} R0: {(beta * sigma)/((mu + gamma) * (mu + sigma))}')
@@ -208,7 +197,8 @@ class Learner(object):
print(f'Predicted I: {prediction.y[1][-1] * int(args.popmodel)}, Actual I: {extended_actual[-1] * correction_factor}')
df = compose_df(prediction, extended_actual, correction_factor, new_index)
with open(f'out/{args.disease}-{args.mode}-data.csv', 'w+') as file:
- file.write(f'Beta: {beta}\nGamma: {gamma}\nMu: {mu}\nSigma: {sigma}\nR0: {(beta * sigma)/((mu + gamma) * (mu + sigma))}')
+ file.write(f'Beta: {beta}\nGamma: {gamma}\nMu: {mu}\nSigma: {sigma}\nR0: {(beta * sigma)/((mu + gamma) * (mu + sigma))}\n')
+ file.write(f'Predicted I: {prediction.y[1][-1] * int(args.popmodel)}, Actual I: {extended_actual[-1] * correction_factor}')
fig, ax = plt.subplots(figsize=(15, 10))
ax.set_title(f'{args.disease} cases over time ({args.mode} Model)')
df.plot(ax=ax)