aboutsummaryrefslogtreecommitdiff
path: root/solver2.py
diff options
context:
space:
mode:
authorTa180m2020-05-02 15:25:32 -0500
committerTa180m2020-05-02 15:25:32 -0500
commit2485953be4d3b81ae65244b5b31cb5bf2b5f9524 (patch)
treec454615a348819fd98e4f72a5691d111c629e46b /solver2.py
parentffc65c7b25d16520301724b441ee2e17a15ce8b7 (diff)
Redo tests
Diffstat (limited to 'solver2.py')
-rw-r--r--solver2.py8
1 files changed, 4 insertions, 4 deletions
diff --git a/solver2.py b/solver2.py
index 4f010ae..4511d12 100644
--- a/solver2.py
+++ b/solver2.py
@@ -148,7 +148,7 @@ class Learner(object):
df = compose_df(prediction, extended_actual, correction_factor, new_index)
with open(f'out/{args.disease}-{args.mode}-data.csv', 'w+') as file:
file.write(f'Beta: {beta}\nGamma: {gamma}\nR0: {beta/gamma}\n')
- file.write(f'Predicted I: {prediction.y[1][-1] * int(args.popmodel)}, Actual I: {extended_actual[-1] * correction_factor}')
+ file.write(f'Predicted I: {prediction.y[1][-1] * int(args.popmodel)}\nActual I: {extended_actual[-1] * correction_factor}')
elif args.mode == 'SIR':
optimal = minimize(
loss_sir,
@@ -164,7 +164,7 @@ class Learner(object):
df = compose_df(prediction, extended_actual, correction_factor, new_index)
with open(f'out/{args.disease}-{args.mode}-data.csv', 'w+') as file:
file.write(f'Beta: {beta}\nGamma: {gamma}\nR0: {beta/gamma}\n')
- file.write(f'Predicted I: {prediction.y[1][-1] * int(args.popmodel)}, Actual I: {extended_actual[-1] * correction_factor}')
+ file.write(f'Predicted I: {prediction.y[1][-1] * int(args.popmodel)}\nActual I: {extended_actual[-1] * correction_factor}')
elif args.mode == 'ESIR':
optimal = minimize(
loss_esir,
@@ -180,7 +180,7 @@ class Learner(object):
df = compose_df(prediction, extended_actual, correction_factor, new_index)
with open(f'out/{args.disease}-{args.mode}-data.csv', 'w+') as file:
file.write(f'Beta: {beta}\nGamma: {gamma}\nMu: {mu}\nR0: {beta/(gamma + mu)}\n')
- file.write(f'Predicted I: {prediction.y[1][-1] * int(args.popmodel)}, Actual I: {extended_actual[-1] * correction_factor}')
+ file.write(f'Predicted I: {prediction.y[1][-1] * int(args.popmodel)}\nActual I: {extended_actual[-1] * correction_factor}')
elif args.mode == 'SEIR':
# exposed_data = self.load_exposed(self.country)
@@ -198,7 +198,7 @@ class Learner(object):
df = compose_df(prediction, extended_actual, correction_factor, new_index)
with open(f'out/{args.disease}-{args.mode}-data.csv', 'w+') as file:
file.write(f'Beta: {beta}\nGamma: {gamma}\nMu: {mu}\nSigma: {sigma}\nR0: {(beta * sigma)/((mu + gamma) * (mu + sigma))}\n')
- file.write(f'Predicted I: {prediction.y[1][-1] * int(args.popmodel)}, Actual I: {extended_actual[-1] * correction_factor}')
+ file.write(f'Predicted I: {prediction.y[1][-1] * int(args.popmodel)}\nActual I: {extended_actual[-1] * correction_factor}')
fig, ax = plt.subplots(figsize=(15, 10))
ax.set_title(f'{args.disease} cases over time ({args.mode} Model)')
df.plot(ax=ax)