diff options
Diffstat (limited to 'solver2.py')
-rw-r--r-- | solver2.py | 20 |
1 files changed, 10 insertions, 10 deletions
@@ -23,7 +23,7 @@ parser.add_argument('--predict', '-p', dest = 'prediction_range', default = None parser.add_argument('--country', '-c', dest = 'country', default = 'US', help = 'the country that is being modeled (defaults to US)') parser.add_argument('--popcountry', '-pc', dest = 'popcountry', default = '3328200000', help = 'the population of the country (defaults to US population)') parser.add_argument('--popmodel', '-pm', dest = 'popmodel', default = '10000', help = 'the population of the model (defaults to 10000)') -parser.add_argument('--initial', '-I', dest = 'initial', default = '1', help = 'initial infected people (defaults to 1') +parser.add_argument('--initial', '-I', dest = 'initial', default = '1', help = 'initial infected people (defaults to 1)') args = parser.parse_args() # Running a model for a million population is quite hard, so here we've reduced the population and modified the actual stats to match @@ -131,7 +131,7 @@ class Learner(object): extended_actual = np.concatenate((data.values.flatten(), [0] * (size - len(data.values)))) if args.mode == 'SEIR': - result = solve_ivp(model, [0, size], [S_0,I_0,R_0, E_0], t_eval=np.arange(0, size, 1)) + result = solve_ivp(model, [0, size], [S_0,I_0,R_0,E_0], t_eval=np.arange(0, size, 1)) else: result = solve_ivp(model, [0, size], [S_0,I_0,R_0], t_eval=np.arange(0, size, 1), vectorized=True) @@ -193,18 +193,18 @@ class Learner(object): with open(f'out/{args.disease}-{args.mode}-data.csv', 'w+') as file: file.write(f'Beta: {beta}\nGamma: {gamma}\nMu: {mu}\nR0: {beta/(gamma + mu)}') elif args.mode == 'SEIR': - exposed_data = self.load_exposed(self.country) + # exposed_data = self.load_exposed(self.country) optimal = minimize( loss_seir, - [0.001, 0.001], - args=(confirmed_data, recovered_data, exposed_data), + [0.001, 0.001, 0.001, 0.001], + args=(confirmed_data, recovered_data), method='L-BFGS-B', bounds=[(0.00000001, 0.4), (0.00000001, 0.4), (0.00000001, 0.4), (0.00000001, 0.4)] ) beta, gamma, mu, sigma = optimal.x print(f'Beta: {beta}, Gamma: {gamma}, Mu: {mu}, Sigma: {sigma} R0: {(beta * sigma)/((mu + gamma) * (mu + sigma))}') - new_index, extended_actual, prediction = self.predict(confirmed_data, beta = beta, gamma = gamma, mu = mu) + new_index, extended_actual, prediction = self.predict(confirmed_data, beta = beta, gamma = gamma, mu = mu, sigma = sigma) print(f'Predicted I: {prediction.y[1][-1] * int(args.popmodel)}, Actual I: {extended_actual[-1] * correction_factor}') df = compose_df(prediction, extended_actual, correction_factor, new_index) with open(f'out/{args.disease}-{args.mode}-data.csv', 'w+') as file: @@ -280,7 +280,7 @@ def loss_esir(point, confirmed, recovered): sol_rec = np.sqrt(np.mean((solution.y[2] - (recovered.values * correction_factor/int(args.popmodel)))**2)) return sol_inf * 0.5 + sol_rec * 0.5 -def loss_seir(point, confirmed, recovered, exposed): +def loss_seir(point, confirmed, recovered): size = len(confirmed) beta, gamma, mu, sigma = point def model(t, y): @@ -289,11 +289,11 @@ def loss_seir(point, confirmed, recovered, exposed): R = y[2] E = y[3] return [mu - beta * S * I - mu * S, beta * S * I - sigma * E - mu * E, sigma * E * I - gamma * I - mu * I, gamma * I - mu * R] - solution = solve_ivp(model, [0, size], [S_0,E_0,I_0,R_0], t_eval=np.arange(0, size, 1), vectorized=True) + solution = solve_ivp(model, [0, size], [S_0,I_0,R_0,E_0], t_eval=np.arange(0, size, 1), vectorized=True) sol_inf = np.sqrt(np.mean((solution.y[1] - (confirmed.values.flatten() * correction_factor/int(args.popmodel)))**2)) sol_rec = np.sqrt(np.mean((solution.y[2] - (recovered.values * correction_factor/int(args.popmodel)))**2)) - sol_exp = np.sqrt(np.mean((solution.y[3] - (exposed.values * correction_factor/int(args.popmodel)))**2)) - return sol_inf/3 + sol_rec/3 + sol_exp/3 + # sol_exp = np.sqrt(np.mean((solution.y[3] - (exposed.values * correction_factor/int(args.popmodel)))**2)) + return sol_inf * 0.5 + sol_rec * 0.5 my_learner = Learner(args.country) my_learner.train() |