aboutsummaryrefslogtreecommitdiff
path: root/finetune_bert.py
diff options
context:
space:
mode:
Diffstat (limited to 'finetune_bert.py')
-rw-r--r--finetune_bert.py718
1 files changed, 84 insertions, 634 deletions
diff --git a/finetune_bert.py b/finetune_bert.py
index 59c8090..9a8ad46 100644
--- a/finetune_bert.py
+++ b/finetune_bert.py
@@ -1,663 +1,113 @@
-#!/usr/bin/env python
-# coding=utf-8
-# Copyright 2020 The HuggingFace Inc. team. All rights reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
"""
-Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset.
-
-Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
-https://huggingface.co/models?filter=text-generation
+accelerate launch --mixed_precision bf16 finetune_bert.py --model_direction ltr --learning_rate 5e-5 --output_dir checkpoints/test
"""
-# You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments.
-"""
-From https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_clm.py
-"""
-
-import logging
+import argparse
import math
-import os
-import sys
-from dataclasses import dataclass, field
-from itertools import chain
-from typing import Optional
-import datasets
-import evaluate
+import accelerate
import torch
-from datasets import load_dataset
-
import transformers
-from transformers import (
- CONFIG_MAPPING,
- MODEL_FOR_CAUSAL_LM_MAPPING,
- AutoConfig,
- AutoModelForCausalLM,
- AutoTokenizer,
- HfArgumentParser,
- Trainer,
- TrainingArguments,
- default_data_collator,
- is_torch_xla_available,
- set_seed,
-)
-from transformers.testing_utils import CaptureLogger
-from transformers.trainer_utils import get_last_checkpoint
-from transformers.utils import check_min_version, send_example_telemetry
-from transformers.utils.versions import require_version
-
-
-# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
-check_min_version("4.47.0.dev0")
-
-require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
-
-logger = logging.getLogger(__name__)
-
-
-MODEL_CONFIG_CLASSES = list(MODEL_FOR_CAUSAL_LM_MAPPING.keys())
-MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
-
-
-@dataclass
-class ModelArguments:
- """
- Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
- """
- # text_direction: str = field(
- #
- # )
- model_name_or_path: Optional[str] = field(
- default=None,
- metadata={
- "help": (
- "The model checkpoint for weights initialization. Don't set if you want to train a model from scratch."
- )
- },
- )
- # model_type: Optional[str] = field(
- # default=None,
- # metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
- # )
- config_overrides: Optional[str] = field(
- default=None,
- metadata={
- "help": (
- "Override some existing default config settings when a model is trained from scratch. Example: "
- "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
- )
- },
- )
- config_name: Optional[str] = field(
- default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
- )
- tokenizer_name: Optional[str] = field(
- default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
- )
- cache_dir: Optional[str] = field(
- default=None,
- metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
- )
- use_fast_tokenizer: bool = field(
- default=True,
- metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
- )
- model_revision: str = field(
- default="main",
- metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
- )
- token: str = field(
- default=None,
- metadata={
- "help": (
- "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
- "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
- )
- },
- )
- trust_remote_code: bool = field(
- default=False,
- metadata={
- "help": (
- "Whether to trust the execution of code from datasets/models defined on the Hub."
- " This option should only be set to `True` for repositories you trust and in which you have read the"
- " code, as it will execute code present on the Hub on your local machine."
- )
- },
- )
- torch_dtype: Optional[str] = field(
- default=None,
- metadata={
- "help": (
- "Override the default `torch.dtype` and load the model under this dtype. If `auto` is passed, the "
- "dtype will be automatically derived from the model's weights."
- ),
- "choices": ["auto", "bfloat16", "float16", "float32"],
- },
- )
- low_cpu_mem_usage: bool = field(
- default=False,
- metadata={
- "help": (
- "It is an option to create the model as an empty shell, then only materialize its parameters when the pretrained weights are loaded. "
- "set True will benefit LLM loading time and RAM consumption."
- )
- },
- )
+from datasets import load_dataset
+from torch.utils.data import DataLoader
+from tqdm.auto import tqdm
+from transformers import get_scheduler
- def __post_init__(self):
- if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
- raise ValueError(
- "--config_overrides can't be used in combination with --config_name or --model_name_or_path"
- )
+from utils import preprocess_datasets, convert_to_torch_dataset, add_attn_hooks, causal_loss_wrapper
-@dataclass
-class DataTrainingArguments:
+def parse_args():
"""
- Arguments pertaining to what data we are going to input our model for training and eval.
+ Re-using HuggingFace arguments when possible (most of the help strings are directly copied).
+ https://github.com/huggingface/transformers/blob/7bbc62474391aff64f63fcc064c975752d1fa4de/examples/pytorch/language-modeling/run_clm.py#L75
"""
-
- dataset_name: Optional[str] = field(
- default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
- )
- dataset_config_name: Optional[str] = field(
- default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
+ parser = argparse.ArgumentParser()
+
+ # Model
+ parser.add_argument("--model_direction", type=str, required=True, choices=["ltr", "rtl"],
+ help="Whether to train a left-to-right or right-to-left LM.")
+ parser.add_argument("--model_name_or_path", type=str, default="bert-base-uncased",
+ help="Checkpoint to initialize weights from.") # TODO: option for training from scratch w/ conf
+
+ # Data
+ parser.add_argument("--dataset_name", type=str, default="Salesforce/wikitext",
+ help="The name of the dataset to use (via the datasets library).")
+ parser.add_argument("--dataset_config_name", type=str, default="wikitext-103-v1",
+ help="The configuration name of the dataset to use (via the datasets library).")
+ # TODO: block_size, train on shorter seqs?
+ parser.add_argument(
+ "--block_size",
+ type=int,
+ help="Optional input sequence length after tokenization. "
+ "The training dataset will be truncated in block of this size for training. "
+ "Default to the model max input length for single sentence inputs (take into account special tokens)."
)
- train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
- validation_file: Optional[str] = field(
- default=None,
- metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
- )
- max_train_samples: Optional[int] = field(
- default=None,
- metadata={
- "help": (
- "For debugging purposes or quicker training, truncate the number of training examples to this "
- "value if set."
- )
- },
- )
- max_eval_samples: Optional[int] = field(
- default=None,
- metadata={
- "help": (
- "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
- "value if set."
- )
- },
- )
- streaming: bool = field(default=False, metadata={"help": "Enable streaming mode"})
- block_size: Optional[int] = field(
- default=None,
- metadata={
- "help": (
- "Optional input sequence length after tokenization. "
- "The training dataset will be truncated in block of this size for training. "
- "Default to the model max input length for single sentence inputs (take into account special tokens)."
- )
- },
- )
- overwrite_cache: bool = field(
- default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
- )
- validation_split_percentage: Optional[int] = field(
- default=5,
- metadata={
- "help": "The percentage of the train set used as validation set in case there's no validation split"
- },
- )
- preprocessing_num_workers: Optional[int] = field(
- default=None,
- metadata={"help": "The number of processes to use for the preprocessing."},
- )
- keep_linebreaks: bool = field(
- default=True, metadata={"help": "Whether to keep line breaks when using TXT files or not."}
- )
-
- def __post_init__(self):
- if self.streaming:
- require_version("datasets>=2.0.0", "The streaming feature requires `datasets>=2.0.0`")
- if self.dataset_name is None and self.train_file is None and self.validation_file is None:
- raise ValueError("Need either a dataset name or a training/validation file.")
- else:
- if self.train_file is not None:
- extension = self.train_file.split(".")[-1]
- assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
- if self.validation_file is not None:
- extension = self.validation_file.split(".")[-1]
- assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
+ # Training
+ parser.add_argument("--output_dir", type=str, required=True,
+ help="The output directory where the model predictions and checkpoints will be written.")
+ parser.add_argument("--per_device_train_batch_size", type=int, default=8)
+ parser.add_argument("--per_device_eval_batch_size", type=int, default=16)
+ parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
+ parser.add_argument("--num_train_epochs", type=int, default=1)
+ parser.add_argument("--learning_rate", type=float, required=True)
+ parser.add_argument("--warmup_steps", type=int, default=0)
+ parser.add_argument("--weight_decay", type=float, default=0.0)
+ parser.add_argument("--logging_steps", type=int, default=1,
+ help="Number of update steps between two logs.")
+ parser.add_argument("--eval_steps", type=int, default=500,
+ help="Number of update steps between two logs.")
+ parser.add_argument("--dataloader_num_workers", type=int, default=8)
+ return parser.parse_args()
def main():
- # See all possible arguments in src/transformers/training_args.py
- # or by passing the --help flag to this script.
- # We now keep distinct sets of args, for a cleaner separation of concerns.
-
- parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
- if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
- # If we pass only one argument to the script and it's the path to a json file,
- # let's parse it to get our arguments.
- model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
- else:
- model_args, data_args, training_args = parser.parse_args_into_dataclasses()
+ args = parse_args()
- # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
- # information sent is the one passed as arguments along with your Python/PyTorch versions.
- send_example_telemetry("run_clm", model_args, data_args)
+ accelerator = accelerate.Accelerator()
+ model = transformers.AutoModelForMaskedLM.from_pretrained(args.model_name_or_path, attn_implementation="sdpa")
+ add_attn_hooks(model, args.model_direction)
+ tokenizer = transformers.AutoTokenizer.from_pretrained(args.model_name_or_path)
- # Setup logging
- logging.basicConfig(
- format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
- datefmt="%m/%d/%Y %H:%M:%S",
- handlers=[logging.StreamHandler(sys.stdout)],
- )
+ # Data
+ raw_datasets = load_dataset(args.dataset_name, args.dataset_config_name)
+ block_size = args.block_size if args.block_size is not None else model.config.max_position_embeddings
+ processed_datasets = preprocess_datasets(raw_datasets, tokenizer, block_size)
+ for split, hf_dataset in processed_datasets.items():
+ processed_datasets[split] = convert_to_torch_dataset(hf_dataset)
- if training_args.should_log:
- # The default of training_args.log_level is passive, so we set log level at info here to have that default.
- transformers.utils.logging.set_verbosity_info()
+ train_loader = DataLoader(processed_datasets["train"], batch_size=args.per_device_train_batch_size, shuffle=True)
+ val_loader = DataLoader(processed_datasets["validation"], batch_size=args.per_device_eval_batch_size)
+ # test_loader = DataLoader(processed_datasets["test"], batch_size=args.per_device_eval_batch_size)
+ model, train_loader, val_loader = accelerator.prepare(model, train_loader, val_loader)
- log_level = training_args.get_process_log_level()
- logger.setLevel(log_level)
- datasets.utils.logging.set_verbosity(log_level)
- transformers.utils.logging.set_verbosity(log_level)
- transformers.utils.logging.enable_default_handler()
- transformers.utils.logging.enable_explicit_format()
-
- # Log on each process the small summary:
- logger.warning(
- f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
- + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
+ optimizer = torch.optim.AdamW(model.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay)
+ lr_scheduler = transformers.get_scheduler(
+ name=transformers.SchedulerType.COSINE,
+ optimizer=optimizer,
+ num_warmup_steps=args.warmup_steps, #* accelerator.num_processes,
+ num_training_steps=args.num_train_epochs * math.ceil(len(train_loader) / args.gradient_accumulation_steps),
)
- logger.info(f"Training/evaluation parameters {training_args}")
-
- # Detecting last checkpoint.
- last_checkpoint = None
- if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
- last_checkpoint = get_last_checkpoint(training_args.output_dir)
- if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
- raise ValueError(
- f"Output directory ({training_args.output_dir}) already exists and is not empty. "
- "Use --overwrite_output_dir to overcome."
- )
- elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
- logger.info(
- f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
- "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
- )
-
- # Set seed before initializing model.
- set_seed(training_args.seed)
-
- # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
- # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
- # (the dataset will be downloaded automatically from the datasets Hub).
- #
- # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
- # 'text' is found. You can easily tweak this behavior (see below).
- #
- # In distributed training, the load_dataset function guarantee that only one local process can concurrently
- # download the dataset.
- if data_args.dataset_name is not None:
- # Downloading and loading a dataset from the hub.
- raw_datasets = load_dataset(
- data_args.dataset_name,
- data_args.dataset_config_name,
- cache_dir=model_args.cache_dir,
- token=model_args.token,
- streaming=data_args.streaming,
- trust_remote_code=model_args.trust_remote_code,
- )
- if "validation" not in raw_datasets.keys():
- raw_datasets["validation"] = load_dataset(
- data_args.dataset_name,
- data_args.dataset_config_name,
- split=f"train[:{data_args.validation_split_percentage}%]",
- cache_dir=model_args.cache_dir,
- token=model_args.token,
- streaming=data_args.streaming,
- trust_remote_code=model_args.trust_remote_code,
- )
- raw_datasets["train"] = load_dataset(
- data_args.dataset_name,
- data_args.dataset_config_name,
- split=f"train[{data_args.validation_split_percentage}%:]",
- cache_dir=model_args.cache_dir,
- token=model_args.token,
- streaming=data_args.streaming,
- trust_remote_code=model_args.trust_remote_code,
- )
- else:
- data_files = {}
- dataset_args = {}
- if data_args.train_file is not None:
- data_files["train"] = data_args.train_file
- if data_args.validation_file is not None:
- data_files["validation"] = data_args.validation_file
- extension = (
- data_args.train_file.split(".")[-1]
- if data_args.train_file is not None
- else data_args.validation_file.split(".")[-1]
- )
- if extension == "txt":
- extension = "text"
- dataset_args["keep_linebreaks"] = data_args.keep_linebreaks
- raw_datasets = load_dataset(
- extension,
- data_files=data_files,
- cache_dir=model_args.cache_dir,
- token=model_args.token,
- **dataset_args,
- )
- # If no validation data is there, validation_split_percentage will be used to divide the dataset.
- if "validation" not in raw_datasets.keys():
- raw_datasets["validation"] = load_dataset(
- extension,
- data_files=data_files,
- split=f"train[:{data_args.validation_split_percentage}%]",
- cache_dir=model_args.cache_dir,
- token=model_args.token,
- **dataset_args,
- )
- raw_datasets["train"] = load_dataset(
- extension,
- data_files=data_files,
- split=f"train[{data_args.validation_split_percentage}%:]",
- cache_dir=model_args.cache_dir,
- token=model_args.token,
- **dataset_args,
- )
-
- # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
- # https://huggingface.co/docs/datasets/loading_datasets.
-
- # Load pretrained model and tokenizer
- #
- # Distributed training:
- # The .from_pretrained methods guarantee that only one local process can concurrently
- # download model & vocab.
-
- config_kwargs = {
- "cache_dir": model_args.cache_dir,
- "revision": model_args.model_revision,
- "token": model_args.token,
- "trust_remote_code": model_args.trust_remote_code,
- }
- if model_args.config_name:
- config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
- elif model_args.model_name_or_path:
- config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
- else:
- config = CONFIG_MAPPING[model_args.model_type]()
- logger.warning("You are instantiating a new config instance from scratch.")
- if model_args.config_overrides is not None:
- logger.info(f"Overriding config: {model_args.config_overrides}")
- config.update_from_string(model_args.config_overrides)
- logger.info(f"New config: {config}")
-
- tokenizer_kwargs = {
- "cache_dir": model_args.cache_dir,
- "use_fast": model_args.use_fast_tokenizer,
- "revision": model_args.model_revision,
- "token": model_args.token,
- "trust_remote_code": model_args.trust_remote_code,
- }
- if model_args.tokenizer_name:
- tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
- elif model_args.model_name_or_path:
- tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
- else:
- raise ValueError(
- "You are instantiating a new tokenizer from scratch. This is not supported by this script. "
- "You can do it from another script, save it, and load it from here, using --tokenizer_name."
- )
-
- if model_args.model_name_or_path:
- torch_dtype = (
- model_args.torch_dtype
- if model_args.torch_dtype in ["auto", None]
- else getattr(torch, model_args.torch_dtype)
- )
- model = AutoModelForCausalLM.from_pretrained(
- model_args.model_name_or_path,
- from_tf=bool(".ckpt" in model_args.model_name_or_path),
- config=config,
- cache_dir=model_args.cache_dir,
- revision=model_args.model_revision,
- token=model_args.token,
- trust_remote_code=model_args.trust_remote_code,
- torch_dtype=torch_dtype,
- low_cpu_mem_usage=model_args.low_cpu_mem_usage,
- )
- else:
- model = AutoModelForCausalLM.from_config(config, trust_remote_code=model_args.trust_remote_code)
- n_params = sum({p.data_ptr(): p.numel() for p in model.parameters()}.values())
- logger.info(f"Training new model from scratch - Total size={n_params/2**20:.2f}M params")
-
- # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
- # on a small vocab and want a smaller embedding size, remove this test.
- embedding_size = model.get_input_embeddings().weight.shape[0]
- if len(tokenizer) > embedding_size:
- model.resize_token_embeddings(len(tokenizer))
-
- # Preprocessing the datasets.
- # First we tokenize all the texts.
- if training_args.do_train:
- column_names = list(raw_datasets["train"].features)
- else:
- column_names = list(raw_datasets["validation"].features)
- text_column_name = "text" if "text" in column_names else column_names[0]
-
- # since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function
- tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base")
-
- def tokenize_function(examples):
- with CaptureLogger(tok_logger) as cl:
- output = tokenizer(examples[text_column_name])
- # clm input could be much much longer than block_size
- if "Token indices sequence length is longer than the" in cl.out:
- tok_logger.warning(
- "^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits"
- " before being passed to the model."
- )
- return output
-
- with training_args.main_process_first(desc="dataset map tokenization"):
- if not data_args.streaming:
- tokenized_datasets = raw_datasets.map(
- tokenize_function,
- batched=True,
- num_proc=data_args.preprocessing_num_workers,
- remove_columns=column_names,
- load_from_cache_file=not data_args.overwrite_cache,
- desc="Running tokenizer on dataset",
- )
- else:
- tokenized_datasets = raw_datasets.map(
- tokenize_function,
- batched=True,
- remove_columns=column_names,
- )
- if hasattr(config, "max_position_embeddings"):
- max_pos_embeddings = config.max_position_embeddings
- else:
- # Define a default value if the attribute is missing in the config.
- max_pos_embeddings = 1024
-
- if data_args.block_size is None:
- block_size = tokenizer.model_max_length
- if block_size > max_pos_embeddings:
- logger.warning(
- f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
- f"Using block_size={min(1024, max_pos_embeddings)} instead. You can change that default value by passing --block_size xxx."
- )
- if max_pos_embeddings > 0:
- block_size = min(1024, max_pos_embeddings)
- else:
- block_size = 1024
- else:
- if data_args.block_size > tokenizer.model_max_length:
- logger.warning(
- f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model "
- f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
- )
- block_size = min(data_args.block_size, tokenizer.model_max_length)
-
- # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
- def group_texts(examples):
- # Concatenate all texts.
- concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
- total_length = len(concatenated_examples[list(examples.keys())[0]])
- # We drop the small remainder, and if the total_length < block_size we exclude this batch and return an empty dict.
- # We could add padding if the model supported it instead of this drop, you can customize this part to your needs.
- total_length = (total_length // block_size) * block_size
- # Split by chunks of max_len.
- result = {
- k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
- for k, t in concatenated_examples.items()
- }
- result["labels"] = result["input_ids"].copy()
- return result
-
- # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
- # for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
- # to preprocess.
- #
- # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
- # https://huggingface.co/docs/datasets/process#map
+ loss_fn = causal_loss_wrapper(args.model_direction)
- with training_args.main_process_first(desc="grouping texts together"):
- if not data_args.streaming:
- lm_datasets = tokenized_datasets.map(
- group_texts,
- batched=True,
- num_proc=data_args.preprocessing_num_workers,
- load_from_cache_file=not data_args.overwrite_cache,
- desc=f"Grouping texts in chunks of {block_size}",
- )
- else:
- lm_datasets = tokenized_datasets.map(
- group_texts,
- batched=True,
- )
+ model.train()
+ optimizer.zero_grad()
- if training_args.do_train:
- if "train" not in tokenized_datasets:
- raise ValueError("--do_train requires a train dataset")
- train_dataset = lm_datasets["train"]
- if data_args.max_train_samples is not None:
- max_train_samples = min(len(train_dataset), data_args.max_train_samples)
- train_dataset = train_dataset.select(range(max_train_samples))
+ for epoch in range(args.num_train_epochs):
+ for step, batch in enumerate(tqdm(train_loader)):
+ labels = batch.pop("labels")
+ outputs = model(**batch)
+ loss = loss_fn(outputs.logits, labels)
+ loss.backward()
- if training_args.do_eval:
- if "validation" not in tokenized_datasets:
- raise ValueError("--do_eval requires a validation dataset")
- eval_dataset = lm_datasets["validation"]
- if data_args.max_eval_samples is not None:
- max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
- eval_dataset = eval_dataset.select(range(max_eval_samples))
+ if (step + 1) % 50 == 1:
+ print(f"{loss.item()=}")
- def preprocess_logits_for_metrics(logits, labels):
- if isinstance(logits, tuple):
- # Depending on the model and config, logits may contain extra tensors,
- # like past_key_values, but logits always come first
- logits = logits[0]
- return logits.argmax(dim=-1)
-
- metric = evaluate.load("accuracy", cache_dir=model_args.cache_dir)
-
- def compute_metrics(eval_preds):
- preds, labels = eval_preds
- # preds have the same shape as the labels, after the argmax(-1) has been calculated
- # by preprocess_logits_for_metrics but we need to shift the labels
- labels = labels[:, 1:].reshape(-1)
- preds = preds[:, :-1].reshape(-1)
- return metric.compute(predictions=preds, references=labels)
-
- # Initialize our Trainer
- trainer = Trainer(
- model=model,
- args=training_args,
- train_dataset=train_dataset if training_args.do_train else None,
- eval_dataset=eval_dataset if training_args.do_eval else None,
- processing_class=tokenizer,
- # Data collator will default to DataCollatorWithPadding, so we change it.
- data_collator=default_data_collator,
- compute_metrics=compute_metrics if training_args.do_eval and not is_torch_xla_available() else None,
- preprocess_logits_for_metrics=preprocess_logits_for_metrics
- if training_args.do_eval and not is_torch_xla_available()
- else None,
- )
-
- # Training
- if training_args.do_train:
- checkpoint = None
- if training_args.resume_from_checkpoint is not None:
- checkpoint = training_args.resume_from_checkpoint
- elif last_checkpoint is not None:
- checkpoint = last_checkpoint
- train_result = trainer.train(resume_from_checkpoint=checkpoint)
- trainer.save_model() # Saves the tokenizer too for easy upload
-
- metrics = train_result.metrics
-
- max_train_samples = (
- data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
- )
- metrics["train_samples"] = min(max_train_samples, len(train_dataset))
-
- trainer.log_metrics("train", metrics)
- trainer.save_metrics("train", metrics)
- trainer.save_state()
-
- # Evaluation
- if training_args.do_eval:
- logger.info("*** Evaluate ***")
-
- metrics = trainer.evaluate()
-
- max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
- metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
- try:
- perplexity = math.exp(metrics["eval_loss"])
- except OverflowError:
- perplexity = float("inf")
- metrics["perplexity"] = perplexity
-
- trainer.log_metrics("eval", metrics)
- trainer.save_metrics("eval", metrics)
-
- kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-generation"}
- if data_args.dataset_name is not None:
- kwargs["dataset_tags"] = data_args.dataset_name
- if data_args.dataset_config_name is not None:
- kwargs["dataset_args"] = data_args.dataset_config_name
- kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
- else:
- kwargs["dataset"] = data_args.dataset_name
-
- if training_args.push_to_hub:
- trainer.push_to_hub(**kwargs)
- else:
- trainer.create_model_card(**kwargs)
-
-
-def _mp_fn(index):
- # For xla_spawn (TPUs)
- main()
+ if (step + 1) % args.gradient_accumulation_steps == 0:
+ optimizer.step()
+ lr_scheduler.step()
+ optimizer.zero_grad()
if __name__ == "__main__":
- main() \ No newline at end of file
+ main()