diff options
Diffstat (limited to 'rtl.ipynb')
-rw-r--r-- | rtl.ipynb | 191 |
1 files changed, 191 insertions, 0 deletions
diff --git a/rtl.ipynb b/rtl.ipynb new file mode 100644 index 0000000..039764c --- /dev/null +++ b/rtl.ipynb @@ -0,0 +1,191 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 4, + "id": "8ddb479e-9d7e-4392-8fc0-fd1c66a07a2b", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertForMaskedLM: ['bert.pooler.dense.bias', 'bert.pooler.dense.weight', 'cls.seq_relationship.bias', 'cls.seq_relationship.weight']\n", + "- This IS expected if you are initializing BertForMaskedLM from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing BertForMaskedLM from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "torch.Size([1, 512])\n" + ] + } + ], + "source": [ + "import torch\n", + "import transformers\n", + "transformers.set_seed(42)\n", + "device = \"cuda\"\n", + "# import sys\n", + "\n", + "# for key in list(sys.modules):\n", + "# if key.startswith(\"transformers.\"):\n", + "# sys.modules.pop(key)\n", + "\n", + "from transformers import AutoModelForMaskedLM\n", + "model = AutoModelForMaskedLM.from_pretrained(\"bert-base-uncased\", torch_dtype=torch.float16, attn_implementation=\"sdpa\").to(device)\n", + "\n", + "from transformers import AutoTokenizer\n", + "tokenizer = AutoTokenizer.from_pretrained(\"bert-base-uncased\")\n", + "\n", + "model.config.alek_says_ltr = True\n", + "model.config.alek_says_rtl = False\n", + "from datasets import load_dataset\n", + "\n", + "ds = load_dataset(\"Salesforce/wikitext\", \"wikitext-103-v1\")\n", + "train_ds = ds[\"train\"]\n", + "inputs = tokenizer(train_ds[10][\"text\"], return_tensors=\"pt\", padding='max_length', truncation=True)\n", + "\n", + "print(inputs[\"input_ids\"].size())" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "30472f6c-31d6-4768-8dca-d3535be28501", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "output = model(**{k: v.to(device) for k, v in inputs.items()})" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "ac46bf41-8cd3-4190-aa4b-6142d6d4d986", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "tensor([[[ -7.1094, -7.1445, -7.2148, ..., -6.6484, -7.0703, -3.6758],\n", + " [-14.2969, -14.2656, -14.3828, ..., -11.9766, -11.3281, -9.4922],\n", + " [-10.7344, -10.6250, -10.7266, ..., -8.6641, -8.2188, -5.0859],\n", + " ...,\n", + " [ -3.4277, -3.5664, -3.9434, ..., -2.0000, -4.4727, -3.7148],\n", + " [ -3.7227, -3.8770, -4.2383, ..., -2.1367, -4.5977, -3.9336],\n", + " [ -4.2070, -4.3672, -4.7578, ..., -2.4941, -4.7734, -4.7227]]],\n", + " device='cuda:0', dtype=torch.float16, grad_fn=<ViewBackward0>)" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "output.logits" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "baa757ff-3ba2-4a72-b819-a2283b729c18", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "tensor([[[-6.3281, -6.3555, -6.4531, ..., -5.5234, -4.1797, -5.7891],\n", + " [-6.7891, -6.6914, -6.7812, ..., -6.1680, -5.1094, -5.5273],\n", + " [-7.1641, -7.1055, -7.0625, ..., -6.2383, -5.3711, -5.5273],\n", + " ...,\n", + " [ 9.4844, 8.9219, 9.2422, ..., 7.6133, 7.2578, 9.9062],\n", + " [10.3672, 9.8516, 10.1797, ..., 8.5547, 8.0781, 10.5938],\n", + " [ 8.3828, 8.0781, 8.1641, ..., 7.2422, 6.7734, 7.9961]]],\n", + " device='cuda:0', dtype=torch.float16, grad_fn=<ViewBackward0>)" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "output.logits" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "a33632fb-ad41-49e3-acee-91d1dda974b8", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "# output1 = model(**{k: v.to(device) for k, v in inputs.items()})\n", + "# print(output1.logits)\n", + "# output2 = model(**{k: v.to(device) for k, v in inputs.items()}, encoder_attention_mask=torch.zeros(1, 512, 512))\n", + "# print(output2.logits)" + ] + }, + { + "cell_type": "markdown", + "id": "ad432f29-f77a-4b84-b6b4-347b74c82f5b", + "metadata": {}, + "source": [ + "## plan for finishing phase 1\n", + "\n", + "- fix the tokenizer\n", + "- pretrain on RTL + LTR\n", + "- check perplexities\n", + "\n", + "## plan for phase 2\n", + "- AQ\n", + "\n", + "## plan for phase 1.5\n", + "- addition" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} |