1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
|
"""
# BERT japanese RTL
accelerate launch --mixed_precision bf16 finetune_bert-japanese.py \
--model_direction rtl \
--model_name distilbert/distilbert-base-multilingual-cased \
--dataset_name ntotsuka123/ja-pretrain \
--warmup_steps 500 \
--learning_rate 5e-5 \
--per_device_train_batch_size 128 \
--gradient_accumulation_steps 1 \
--per_device_eval_batch_size 128 \
--output_dir checkpoints/distilbert_base_japan_rtl/ \
--eval_steps 1000 \
--block_size 128 \
--num_train_epochs 1 \
--weight_decay 1e-4
is there some way to only do 1% of the data...
got it
you have to change the code. I don't want ot do it right now
# BERT japanese LTR
accelerate launch --mixed_precision bf16 finetune_bert.py \
--model_direction rtl \
--dataset_name oscar \
--dataset_config_name unshuffled_deduplicated_ja \
--model_name cl-tohoku/bert-base-japanese \
--warmup_steps 500 \
--learning_rate 5e-5 \
--per_device_train_batch_size 128 \
--per_device_eval_batch_size 128 \
--output_dir checkpoints/bert_base_rtl/ \
--eval_steps 899 \
--block_size 128 \
--num_train_epochs 4 \
--weight_decay 1e-4
"""
import argparse
import math
import os
import accelerate
import torch
import transformers
import wandb
from datasets import load_dataset
from torch.utils.data import DataLoader, Subset
from tqdm.auto import tqdm
from transformers import set_seed
from utils import preprocess_datasets, convert_to_torch_dataset, add_attn_hooks, causal_loss_wrapper
def parse_args():
"""
Re-using HuggingFace arguments when possible (most of the help strings are directly copied).
https://github.com/huggingface/transformers/blob/7bbc62474391aff64f63fcc064c975752d1fa4de/examples/pytorch/language-modeling/run_clm.py#L75
"""
parser = argparse.ArgumentParser()
# Model
parser.add_argument("--model_direction", type=str, required=True, choices=["ltr", "rtl"],
help="Whether to train a left-to-right or right-to-left LM.")
parser.add_argument("--model_config", type=str,
help="Path to model config json, from which to train_from_scratch.")
parser.add_argument("--model_name", type=str, required=True,
help="Name of tokenizer to load. "
"If model_config is not specified, will also load model architecture."
"If not training from scratch, will also load model weights.")
# Data
parser.add_argument("--dataset_name", type=str, default="Salesforce/wikitext",
help="The name of the dataset to use (via the datasets library).")
parser.add_argument("--dataset_config_name", type=str, default="wikitext-103-v1",
help="The configuration name of the dataset to use (via the datasets library).")
# TODO: block_size, train on shorter seqs?
parser.add_argument(
"--block_size",
type=int,
help="Optional input sequence length after tokenization. "
"The training dataset will be truncated in block of this size for training. "
"Default to the model max input length for single sentence inputs (take into account special tokens)."
)
# Training
parser.add_argument("--train_from_scratch", action="store_true")
parser.add_argument("--output_dir", type=str, required=True,
help="The output directory where the model predictions and checkpoints will be written.")
parser.add_argument("--per_device_train_batch_size", type=int, default=8)
parser.add_argument("--per_device_eval_batch_size", type=int, default=16)
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
parser.add_argument("--num_train_epochs", type=int, default=1)
parser.add_argument("--learning_rate", type=float, required=True)
parser.add_argument("--warmup_steps", type=int, default=0)
parser.add_argument("--weight_decay", type=float, default=0.0)
parser.add_argument("--logging_steps", type=int, default=1,
help="Number of update steps between two logs.")
parser.add_argument("--eval_steps", type=int, default=20000,
help="Number of update steps between two logs.")
parser.add_argument("--dataloader_num_workers", type=int, default=8)
args = parser.parse_args()
return args
def main():
args = parse_args()
accelerator = accelerate.Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps, log_with="wandb", project_dir=args.output_dir)
set_seed(42)
# Will `add_attn_hooks` to `model` later
if args.model_config is not None:
assert args.train_from_scratch, "Expected to train from scratch when model_config is specified."
config = transformers.AutoConfig.from_pretrained(args.model_config)
model = transformers.AutoModelForMaskedLM.from_config(config)
else:
# Load model weights in both cases, but re-initialize if training from scratch
model = transformers.AutoModelForMaskedLM.from_pretrained(args.model_name, attn_implementation="sdpa")
if args.train_from_scratch:
model.apply(model._initialize_weights)
model.tie_weights() # probably not applicable
tokenizer = transformers.AutoTokenizer.from_pretrained(args.model_name)
# Data
raw_datasets = load_dataset(args.dataset_name)
block_size = args.block_size if args.block_size is not None else model.config.max_position_embeddings
model.config.max_position_embeddings = block_size
processed_datasets = preprocess_datasets(raw_datasets, tokenizer, block_size)
for split, hf_dataset in processed_datasets.items():
processed_datasets[split] = convert_to_torch_dataset(hf_dataset)
train_val_split = processed_datasets["train"].train_test_split(test_size=0.2, shuffle=True)
train_indices = torch.randperm(len(train_val_split["train"]))[:int(0.4 * len(train_val_split["train"]))]
train_subset = Subset(train_val_split["train"], train_indices)
val_indices = torch.randperm(len(train_val_split["test"]))[:int(0.01 * len(train_val_split["test"]))]
val_subset = Subset(train_val_split["test"], val_indices)
train_loader = DataLoader(train_subset, batch_size=args.per_device_train_batch_size, shuffle=True)
val_loader = DataLoader(val_subset, batch_size=args.per_device_eval_batch_size)
# train_val_split = processed_datasets["train"].train_test_split(test_size=0.2, shuffle=True)
# train_loader = DataLoader(train_val_split["train"], batch_size=args.per_device_train_batch_size, shuffle=True)
# val_loader = DataLoader(train_val_split["test"], batch_size=args.per_device_eval_batch_size)
# test_loader = DataLoader(processed_datasets["test"], batch_size=args.per_device_eval_batch_size)
model, train_loader, val_loader = accelerator.prepare(model, train_loader, val_loader)
optimizer = torch.optim.AdamW(model.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay)
lr_scheduler = transformers.get_scheduler(
name=transformers.SchedulerType.CONSTANT,
optimizer=optimizer,
num_warmup_steps=args.warmup_steps * accelerator.num_processes,
num_training_steps=args.num_train_epochs * math.ceil(len(train_loader) / args.gradient_accumulation_steps),
)
loss_fn = causal_loss_wrapper(args.model_direction)
add_attn_hooks(model, args.model_direction)
model.train()
optimizer.zero_grad()
wandb.require("core")
accelerator.init_trackers(
project_name="NLP-Class-Project",
config=vars(args) | {"model_parameters": sum(p.numel() for p in model.parameters())},
init_kwargs={"wandb": {"entity": "frostbyte"}}
)
global_step = 0 # unaccumulated steps
past_losses = []
for epoch in tqdm(range(args.num_train_epochs), position=0, leave=True, desc="Epoch"):
for step, batch in enumerate(tqdm(train_loader, position=1, leave=False, desc="Train Iteration")):
with accelerator.accumulate(model):
labels = batch.pop("labels")
outputs = model(**batch)
loss = loss_fn(outputs.logits, labels)
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
past_losses.append(loss.item())
if (global_step + 1) % args.logging_steps == 0:
avg_train_loss = torch.tensor(past_losses).mean().item() # Assuming 1 GPU
accelerator.log({
"train_loss": avg_train_loss,
"learning_rate": lr_scheduler.get_last_lr()[0],
})
past_losses.clear()
if (global_step + 1) % args.eval_steps == 0:
val_loss_sum = val_examples = 0
model.eval()
for val_batch in tqdm(val_loader, position=2, leave=False, desc="Val Iteration"):
labels = val_batch.pop("labels")
with torch.no_grad():
outputs = model(**val_batch)
loss = loss_fn(outputs.logits, labels)
batch_size = labels.size(0)
val_loss_sum += loss.item() * batch_size
val_examples += batch_size
accelerator.log({"val_loss": val_loss_sum / val_examples},
log_kwargs={"wandb": {"commit": False}})
model.train()
if ((step + 1) % args.gradient_accumulation_steps == 0) or step == (len(train_loader) - 1):
global_step += 1
model.save_pretrained(os.path.join(args.output_dir, f"epoch_{epoch}_checkpt"))
if __name__ == "__main__":
main()
|