1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
|
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"execution_state": "idle",
"id": "1ddfc692-bda7-4d38-a549-2fb0d40d437d",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"BertForMaskedLM has generative capabilities, as `prepare_inputs_for_generation` is explicitly overwritten. However, it doesn't directly inherit from `GenerationMixin`. From 👉v4.50👈 onwards, `PreTrainedModel` will NOT inherit from `GenerationMixin`, and this model will lose the ability to call `generate` and other related functions.\n",
" - If you're using `trust_remote_code=True`, you can get rid of this warning by loading the model with an auto class. See https://huggingface.co/docs/transformers/en/model_doc/auto#auto-classes\n",
" - If you are the owner of the model architecture code, please modify your model class such that it inherits from `GenerationMixin` (after `PreTrainedModel`, otherwise you'll get an exception).\n",
" - If you are not the owner of the model architecture class, please contact the model code owner to update it.\n",
"Some weights of the model checkpoint at /home/sipb/nlp-class-project/checkpoints/bert_base_ltr/epoch_3_checkpt were not used when initializing BertForMaskedLM: ['attention_mask']\n",
"- This IS expected if you are initializing BertForMaskedLM from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
"- This IS NOT expected if you are initializing BertForMaskedLM from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
"Some weights of BertForMaskedLM were not initialized from the model checkpoint at /home/sipb/nlp-class-project/checkpoints/bert_base_ltr/epoch_3_checkpt and are newly initialized because the shapes did not match:\n",
"- bert.embeddings.position_embeddings.weight: found shape torch.Size([512, 768]) in the checkpoint and torch.Size([128, 768]) in the model instantiated\n",
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
]
}
],
"source": [
"import math\n",
"import sys\n",
"\n",
"sys.path.append(\"..\")\n",
"\n",
"import torch\n",
"import transformers\n",
"\n",
"import pandas as pd\n",
"\n",
"from utils import add_attn_hooks\n",
"\n",
"# text_dir = \"rtl\"\n",
"text_dir = \"ltr\"\n",
"tokenizer = transformers.AutoTokenizer.from_pretrained(\"bert-base-uncased\")\n",
"model = transformers.AutoModelForMaskedLM.from_pretrained(f\"/home/sipb/nlp-class-project/checkpoints/bert_base_{text_dir}/epoch_3_checkpt\", ignore_mismatched_sizes=True)\n",
"\n",
"# tokenizer = transformers.AutoTokenizer.from_pretrained(\"distilbert/distilbert-base-uncased\")\n",
"# model = transformers.AutoModelForMaskedLM.from_pretrained(f\"/home/sipb/nlp-class-project/checkpoints/distilbert_base_{text_dir}/epoch_3_checkpt\", ignore_mismatched_sizes=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "145d2ffd-db55-4b8f-9fbb-85a51e0b3d11",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 3,
"execution_state": "idle",
"id": "a732375b-1682-45c6-8df0-8db1458559c9",
"metadata": {},
"outputs": [],
"source": [
"add_attn_hooks(model, text_dir)\n",
"model.eval();"
]
},
{
"cell_type": "code",
"execution_count": 5,
"execution_state": "idle",
"id": "041d1702-5aaf-45f0-9413-4014b315d1ed",
"metadata": {},
"outputs": [],
"source": [
"df = pd.read_parquet('/home/sipb/nlp-class-project/data/japan.parquet')"
]
},
{
"cell_type": "code",
"execution_count": 14,
"execution_state": "idle",
"id": "2bace74b-a716-4d49-a912-53155cf002ba",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"b'\n",
"_START_ARTICLE_\n",
"ビートたけしの教科書に載らない日本人の謎\n",
"_START_SECTION_\n",
"概要\n",
"_START_PARAGRAPH_\n",
"「教科書には決して載らない」日本人の謎やしきたりを多角的に検証し、日本人のDNAを解明する。_NEWLINE_新春番組として定期的に放送されており、年末の午前中に再放送されるのが恒例となっている。'\n"
]
}
],
"source": [
"df[\"text\"][0]\n",
"import codecs\n",
"decoded_str = codecs.escape_decode(df[\"text\"][0])[0].decode('utf-8')\n",
"print(decoded_str)"
]
},
{
"cell_type": "code",
"execution_count": 32,
"execution_state": "idle",
"id": "8a9147ea-d9dc-4826-8030-c8417609405d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"q : where do pandas live? a : (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, and,, (,,,,,,.,,,,,,,,,,,,, and\n"
]
}
],
"source": [
"input_text = [\"Q: Where do pandas live? A:\"]#, \"ビートたけしの教科書に載らない日\"]\n",
"batch = tokenizer(input_text, return_tensors=\"pt\", padding_side=\"right\", padding=\"max_length\", max_length=64)\n",
"output_ids = model.generate(batch['input_ids'], max_length=128, do_sample=False) # do_sample=False ensures greedy decoding\n",
"decoded_output = tokenizer.decode(output_ids[0], skip_special_tokens=True)\n",
"print(decoded_output)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"execution_state": "idle",
"id": "1a7c9b35-0c07-431d-91df-bd2f8c7467eb",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"MaskedLMOutput(loss=None, logits=tensor([[[ -7.9645, -7.6722, -7.8979, ..., -8.6562, -8.2586, -6.7448],\n",
" [-11.1255, -11.2591, -11.3443, ..., -10.1338, -11.9891, -10.2974],\n",
" [ -8.1256, -8.1880, -7.9874, ..., -8.0597, -8.6987, -10.2472],\n",
" ...,\n",
" [-14.5633, -14.4418, -14.4735, ..., -14.5651, -14.2234, -13.5610],\n",
" [-18.9095, -18.6487, -18.7593, ..., -19.1327, -18.8564, -17.4334],\n",
" [-17.8532, -17.6451, -17.7208, ..., -18.0046, -17.7334, -16.5670]]]), hidden_states=None, attentions=None)\n"
]
}
],
"source": [
"with torch.inference_mode():\n",
" batch = tokenizer([\"ビートたけしの教科書に載らない日本人の謎\"], return_tensors=\"pt\", padding_side=\"left\" if text_dir == \"rtl\" else \"right\", padding=\"max_length\", max_length=128)\n",
" output = model(**batch)\n",
" print(output)\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 15,
"execution_state": "idle",
"id": "a4098975-2df6-4435-bc93-1a5afd6d7e68",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'riddles' is not defined",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[15], line 4\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;66;03m# CPU is fast enough\u001b[39;00m\n\u001b[1;32m 3\u001b[0m ppls \u001b[38;5;241m=\u001b[39m []\n\u001b[0;32m----> 4\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m riddle \u001b[38;5;129;01min\u001b[39;00m \u001b[43mriddles\u001b[49m:\n\u001b[1;32m 5\u001b[0m batch \u001b[38;5;241m=\u001b[39m tokenizer([riddle], return_tensors\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpt\u001b[39m\u001b[38;5;124m\"\u001b[39m, padding_side\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mleft\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m text_dir \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrtl\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mright\u001b[39m\u001b[38;5;124m\"\u001b[39m, padding\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmax_length\u001b[39m\u001b[38;5;124m\"\u001b[39m, max_length\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m128\u001b[39m)\n\u001b[1;32m 6\u001b[0m batch[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mlabels\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m batch[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124minput_ids\u001b[39m\u001b[38;5;124m\"\u001b[39m]\u001b[38;5;241m.\u001b[39mclone()\n",
"\u001b[0;31mNameError\u001b[0m: name 'riddles' is not defined"
]
}
],
"source": [
"# CPU is fast enough\n",
"\n",
"ppls = []\n",
"for riddle in riddles:\n",
" batch = tokenizer([riddle], return_tensors=\"pt\", padding_side=\"left\" if text_dir == \"rtl\" else \"right\", padding=\"max_length\", max_length=128)\n",
" batch[\"labels\"] = batch[\"input_ids\"].clone()\n",
" batch[\"labels\"][batch[\"attention_mask\"] == 0] = -100\n",
" # batch = tokenizer([riddle], return_tensors=\"pt\")#, padding_side=\"left\" if text_dir == \"rtl\" else \"right\", padding=\"longest\", max_length=128)\n",
" # batch[\"labels\"] = batch[\"input_ids\"]\n",
" with torch.inference_mode():\n",
" output = model(**batch)\n",
" ppls.append(math.e ** output.loss.item())"
]
},
{
"cell_type": "code",
"execution_count": 39,
"execution_state": "idle",
"id": "c4a82af4-d0d8-415a-9135-3a1350c1402e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(692.7175314596647, 'rtl')"
]
},
"execution_count": 39,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sum(ppls) / len(ppls), text_dir"
]
},
{
"cell_type": "code",
"execution_count": 43,
"execution_state": "idle",
"id": "84a95c66-6dd3-4ccb-96a2-96f38008f70e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(616.6241458855995, 'ltr')"
]
},
"execution_count": 43,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sum(ppls) / len(ppls), text_dir"
]
},
{
"cell_type": "code",
"execution_count": 35,
"execution_state": "idle",
"id": "51ed80f1-a935-42bc-8194-832f91222c45",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(526.979384061791, 'rtl')"
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sum(ppls) / len(ppls), text_dir # distilbert"
]
},
{
"cell_type": "code",
"execution_count": 31,
"execution_state": "idle",
"id": "34a2edec-b1d9-466c-a457-954c587f7817",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(288.22724792187364, 'ltr')"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sum(ppls) / len(ppls), text_dir # distilbert"
]
},
{
"cell_type": "code",
"execution_count": 21,
"execution_state": "idle",
"id": "40a98c10-59c3-498a-a9e6-c23bd9437bc7",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"937.8557468023619"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sum(ppls) / len(ppls)"
]
},
{
"cell_type": "code",
"execution_count": 58,
"execution_state": "idle",
"id": "80b22ba1-e5ba-4f1e-8038-158a2c2f37a6",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'input_ids': tensor([[ 101, 1045, 2064, 2022, 2524, 1010, 2021, 1045, 2572, 2025,\n",
" 5024, 1012, 2054, 2572, 1045, 1029, 1037, 15117, 1012, 102,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0]]), 'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0]]), 'labels': tensor([[ 101, 1045, 2064, 2022, 2524, 1010, 2021, 1045, 2572, 2025,\n",
" 5024, 1012, 2054, 2572, 1045, 1029, 1037, 15117, 1012, 102,\n",
" -100, -100, -100, -100, -100, -100, -100, -100, -100, -100,\n",
" -100, -100, -100, -100, -100, -100, -100, -100, -100, -100,\n",
" -100, -100, -100, -100, -100, -100, -100, -100, -100, -100,\n",
" -100, -100, -100, -100, -100, -100, -100, -100, -100, -100,\n",
" -100, -100, -100, -100, -100, -100, -100, -100, -100, -100,\n",
" -100, -100, -100, -100, -100, -100, -100, -100, -100, -100,\n",
" -100, -100, -100, -100, -100, -100, -100, -100, -100, -100,\n",
" -100, -100, -100, -100, -100, -100, -100, -100, -100, -100,\n",
" -100, -100, -100, -100, -100, -100, -100, -100, -100, -100,\n",
" -100, -100, -100, -100, -100, -100, -100, -100, -100, -100,\n",
" -100, -100, -100, -100, -100, -100, -100, -100]])}"
]
},
"execution_count": 58,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"batch"
]
},
{
"cell_type": "code",
"execution_count": 16,
"execution_state": "idle",
"id": "c68b5235-a4a7-4f38-9acb-f5072e546a96",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(array([ 4., 6., 11., 6., 5., 2., 1., 1., 2., 2.]),\n",
" array([ 613.56297843, 829.36555779, 1045.16813716, 1260.97071653,\n",
" 1476.77329589, 1692.57587526, 1908.37845463, 2124.18103399,\n",
" 2339.98361336, 2555.78619272, 2771.58877209]),\n",
" <BarContainer object of 10 artists>)"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGdCAYAAACyzRGfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAY8UlEQVR4nO3df5DVVf348dcCsoCyyy9ZIBdZf4ym4E+MECMdGIHQsBpHjRqiRlMxJQqFCozMQGscJjM1Z1KbUbRmBBt/MGMokiMiIKikoRgKqUCJ7PJDV2TP54+v3vEKqPS99ywLj8fMnXHf78P7nMvhzj69P3YrUkopAAAyadXcCwAA9i/iAwDISnwAAFmJDwAgK/EBAGQlPgCArMQHAJCV+AAAsmrT3Av4uKampnjjjTeiY8eOUVFR0dzLAQA+g5RSbN68OXr16hWtWn3ycxt7XXy88cYbUVtb29zLAAD+B2vXro1DDjnkE8fsdfHRsWPHiA8WX1VV1dzLAQA+g4aGhqitrS18H/8ke118fPhSS1VVlfgAgBbms7xlwhtOAYCsxAcAkJX4AACyEh8AQFbiAwDISnwAAFmJDwAgK/EBAGQlPgCArMQHAJCV+AAAshIfAEBW4gMAyEp8AABZtWnuBbBv6jPpweZewh57dcbI5l4CwH7BMx8AQFbiAwDISnwAAFmJDwAgK/EBAGQlPgCArMQHAJCV+AAAshIfAEBW4gMAyEp8AABZiQ8AICvxAQBkJT4AgKzEBwCQlfgAALISHwBAVuIDAMhKfAAAWYkPACAr8QEAZCU+AICsxAcAkJX4AACyEh8AQFbiAwDISnwAAFntcXwsWLAgzj777OjVq1dUVFTEnDlzis6nlGLq1KnRs2fPaN++fQwdOjRefvnlUq4ZAGjB9jg+tm7dGscff3zcdNNNuzx//fXXx29/+9u45ZZbYtGiRXHggQfGsGHD4t133y3FegGAFq7Nnv6BESNGxIgRI3Z5LqUUM2fOjJ/97GcxatSoiIj405/+FDU1NTFnzpw4//zz//9XDAC0aCV9z8fq1atj3bp1MXTo0MKx6urqGDBgQCxcuHCXf6axsTEaGhqKbgDAvquk8bFu3bqIiKipqSk6XlNTUzj3cdOnT4/q6urCrba2tpRLAgD2Ms3+aZfJkydHfX194bZ27drmXhIAUEYljY8ePXpERMT69euLjq9fv75w7uMqKyujqqqq6AYA7LtKGh91dXXRo0ePmDdvXuFYQ0NDLFq0KAYOHFjKqQCAFmqPP+2yZcuWWLVqVeHr1atXx/Lly6NLly7Ru3fvGD9+fPzyl7+MI488Murq6mLKlCnRq1evOOecc0q9dgCgBdrj+FiyZEmcccYZha8nTJgQERFjxoyJO+64I6688srYunVrXHTRRbFp06Y47bTTYu7cudGuXbvSrhwAaJEqUkqpuRfxUQ0NDVFdXR319fXe/9GC9Zn0YHMvYY+9OmNkcy8BoMXak+/fzf5pFwBg/yI+AICsxAcAkJX4AACyEh8AQFbiAwDISnwAAFmJDwAgK/EBAGQlPgCArMQHAJCV+AAAshIfAEBW4gMAyEp8AABZiQ8AICvxAQBkJT4AgKzEBwCQlfgAALISHwBAVuIDAMhKfAAAWYkPACAr8QEAZCU+AICsxAcAkJX4AACyEh8AQFbiAwDISnwAAFmJDwAgK/EBAGQlPgCArMQHAJCV+AAAshIfAEBW4gMAyEp8AABZiQ8AICvxAQBkJT4AgKzEBwCQlfgAALISHwBAVuIDAMhKfAAAWYkPACAr8QEAZCU+AICsxAcAkJX4AACyEh8AQFYlj48dO3bElClToq6uLtq3bx+HH354XHPNNZFSKvVUAEAL1KbUF7zuuuvi5ptvjjvvvDOOPfbYWLJkSYwdOzaqq6vj8ssvL/V0AEALU/L4ePLJJ2PUqFExcuTIiIjo06dPzJo1K55++ulSTwUAtEAlf9nl1FNPjXnz5sVLL70UERHPPvtsPPHEEzFixIhdjm9sbIyGhoaiGwCw7yr5Mx+TJk2KhoaGOProo6N169axY8eOuPbaa2P06NG7HD99+vSYNm1aqZcBAOylSv7Mx5///Oe466674u67745nnnkm7rzzzvjNb34Td9555y7HT548Oerr6wu3tWvXlnpJAMBepOTPfEycODEmTZoU559/fkRE9OvXL1577bWYPn16jBkzZqfxlZWVUVlZWeplAAB7qZI/87Ft27Zo1ar4sq1bt46mpqZSTwUAtEAlf+bj7LPPjmuvvTZ69+4dxx57bCxbtixuuOGG+O53v1vqqQCAFqjk8XHjjTfGlClT4tJLL40NGzZEr1694vvf/35MnTq11FMBAC1QyeOjY8eOMXPmzJg5c2apLw0A7AP8bhcAICvxAQBkJT4AgKzEBwCQlfgAALISHwBAVuIDAMhKfAAAWYkPACAr8QEAZCU+AICsxAcAkJX4AACyEh8AQFbiAwDISnwAAFmJDwAgK/EBAGQlPgCArMQHAJCV+AAAshIfAEBW4gMAyEp8AABZiQ8AICvxAQBkJT4AgKzEBwCQlfgAALISHwBAVuIDAMhKfAAAWYkPACAr8QEAZCU+AICsxAcAkJX4AACyEh8AQFbiAwDISnwAAFmJDwAgK/EBAGQlPgCArMQHAJCV+AAAshIfAEBW4gMAyEp8AABZiQ8AICvxAQBkJT4AgKzEBwCQlfgAALIqS3y8/vrr8a1vfSu6du0a7du3j379+sWSJUvKMRUA0MK0KfUF33777Rg0aFCcccYZ8fDDD8fBBx8cL7/8cnTu3LnUUwEALVDJ4+O6666L2trauP322wvH6urqSj0NANBClfxll7/+9a/Rv3//OPfcc6N79+5x4oknxm233bbb8Y2NjdHQ0FB0AwD2XRUppVTKC7Zr1y4iIiZMmBDnnntuLF68OK644oq45ZZbYsyYMTuN//nPfx7Tpk3b6Xh9fX1UVVWVcmktVp9JDzb3EthLvTpjZHMvASAiIhoaGqK6uvozff8ueXy0bds2+vfvH08++WTh2OWXXx6LFy+OhQsX7jS+sbExGhsbixZfW1srPj5CfLA74gPYW+xJfJT8ZZeePXvGMcccU3Ts85//fKxZs2aX4ysrK6OqqqroBgDsu0oeH4MGDYqVK1cWHXvppZfi0EMPLfVUAEALVPL4+OEPfxhPPfVU/OpXv4pVq1bF3XffHX/4wx9i3LhxpZ4KAGiBSh4fp5xySsyePTtmzZoVffv2jWuuuSZmzpwZo0ePLvVUAEALVPKf8xERcdZZZ8VZZ51VjksDAC2c3+0CAGQlPgCArMQHAJCV+AAAshIfAEBW4gMAyEp8AABZiQ8AICvxAQBkJT4AgKzEBwCQlfgAALISHwBAVuIDAMhKfAAAWYkPACAr8QEAZCU+AICsxAcAkJX4AACyEh8AQFbiAwDISnwAAFmJDwAgK/EBAGTVprkXAPzv+kx6sLmXsMdenTGyuZcANDPPfAAAWYkPACAr8QEAZCU+AICsxAcAkJX4AACyEh8AQFbiAwDISnwAAFmJDwAgK/EBAGQlPgCArMQHAJCV+AAAshIfAEBW4gMAyEp8AABZiQ8AICvxAQBkJT4AgKzEBwCQlfgAALISHwBAVuIDAMhKfAAAWYkPACAr8QEAZFX2+JgxY0ZUVFTE+PHjyz0VANAClDU+Fi9eHLfeemscd9xx5ZwGAGhByhYfW7ZsidGjR8dtt90WnTt3Ltc0AEALU7b4GDduXIwcOTKGDh36ieMaGxujoaGh6AYA7LvalOOi99xzTzzzzDOxePHiTx07ffr0mDZtWjmWsUt9Jj2YbS4AYGclf+Zj7dq1ccUVV8Rdd90V7dq1+9TxkydPjvr6+sJt7dq1pV4SALAXKfkzH0uXLo0NGzbESSedVDi2Y8eOWLBgQfzud7+LxsbGaN26deFcZWVlVFZWlnoZAMBequTxMWTIkHj++eeLjo0dOzaOPvrouOqqq4rCAwDY/5Q8Pjp27Bh9+/YtOnbggQdG165ddzoOAOx//IRTACCrsnza5ePmz5+fYxoAoAXwzAcAkJX4AACyEh8AQFbiAwDISnwAAFmJDwAgK/EBAGQlPgCArMQHAJCV+AAAshIfAEBW4gMAyEp8AABZiQ8AICvxAQBkJT4AgKzEBwCQlfgAALISHwBAVuIDAMhKfAAAWYkPACAr8QEAZCU+AICsxAcAkJX4AACyEh8AQFbiAwDISnwAAFmJDwAgK/EBAGQlPgCArMQHAJCV+AAAshIfAEBW4gMAyEp8AABZiQ8AICvxAQBkJT4AgKzEBwCQlfgAALISHwBAVuIDAMhKfAAAWYkPACAr8QEAZCU+AICsxAcAkJX4AACyEh8AQFbiAwDISnwAAFmVPD6mT58ep5xySnTs2DG6d+8e55xzTqxcubLU0wAALVTJ4+Pxxx+PcePGxVNPPRWPPPJIbN++Pc4888zYunVrqacCAFqgNqW+4Ny5c4u+vuOOO6J79+6xdOnSGDx4cKmnAwBamJLHx8fV19dHRESXLl12eb6xsTEaGxsLXzc0NJR7SQBAMyprfDQ1NcX48eNj0KBB0bdv312OmT59ekybNq2cywD2In0mPdjcS9hjr84Y2dxL2G+0xH8fLVFz/5su66ddxo0bFytWrIh77rlnt2MmT54c9fX1hdvatWvLuSQAoJmV7ZmPyy67LB544IFYsGBBHHLIIbsdV1lZGZWVleVaBgCwlyl5fKSU4gc/+EHMnj075s+fH3V1daWeAgBowUoeH+PGjYu777477r///ujYsWOsW7cuIiKqq6ujffv2pZ4OAGhhSv6ej5tvvjnq6+vj9NNPj549exZu9957b6mnAgBaoLK87AIAsDt+twsAkJX4AACyEh8AQFbiAwDISnwAAFmJDwAgK/EBAGQlPgCArMQHAJCV+AAAshIfAEBW4gMAyEp8AABZiQ8AICvxAQBkJT4AgKzEBwCQlfgAALISHwBAVuIDAMhKfAAAWYkPACAr8QEAZCU+AICsxAcAkFWb5l4AwN6uz6QHm3sJsE/xzAcAkJX4AACyEh8AQFbiAwDISnwAAFmJDwAgK/EBAGQlPgCArMQHAJCV+AAAshIfAEBW4gMAyEp8AABZiQ8AICvxAQBkJT4AgKzEBwCQlfgAALISHwBAVuIDAMhKfAAAWYkPACAr8QEAZCU+AICsxAcAkJX4AACyEh8AQFZli4+bbrop+vTpE+3atYsBAwbE008/Xa6pAIAWpCzxce+998aECRPi6quvjmeeeSaOP/74GDZsWGzYsKEc0wEALUhZ4uOGG26ICy+8MMaOHRvHHHNM3HLLLdGhQ4f44x//WI7pAIAWpE2pL/jee+/F0qVLY/LkyYVjrVq1iqFDh8bChQt3Gt/Y2BiNjY2Fr+vr6yMioqGhodRLi4iIpsZtZbkuALQU5fge++E1U0qfOrbk8fHf//43duzYETU1NUXHa2pq4p///OdO46dPnx7Tpk3b6XhtbW2plwYARET1zPJde/PmzVFdXf2JY0oeH3tq8uTJMWHChMLXTU1NsXHjxujatWtUVFQ069rYWUNDQ9TW1sbatWujqqqquZfDx9ifvZ892rvZn/9dSik2b94cvXr1+tSxJY+Pbt26RevWrWP9+vVFx9evXx89evTYaXxlZWVUVlYWHevUqVOpl0WJVVVVeWDuxezP3s8e7d3sz//m057x+FDJ33Datm3bOPnkk2PevHmFY01NTTFv3rwYOHBgqacDAFqYsrzsMmHChBgzZkz0798/vvCFL8TMmTNj69atMXbs2HJMBwC0IGWJj/POOy/+85//xNSpU2PdunVxwgknxNy5c3d6EyotT2VlZVx99dU7vVTG3sH+7P3s0d7N/uRRkT7LZ2IAAErE73YBALISHwBAVuIDAMhKfAAAWYmP/dCCBQvi7LPPjl69ekVFRUXMmTOn6HxKKaZOnRo9e/aM9u3bx9ChQ+Pll18uGrNx48YYPXp0VFVVRadOneJ73/tebNmypWjMc889F1/60peiXbt2UVtbG9dff32W+9fSfdr+fOc734mKioqi2/Dhw4vG2J/ymT59epxyyinRsWPH6N69e5xzzjmxcuXKojHvvvtujBs3Lrp27RoHHXRQfOMb39jpBy+uWbMmRo4cGR06dIju3bvHxIkT4/333y8aM3/+/DjppJOisrIyjjjiiLjjjjuy3MeW7rPs0emnn77T4+jiiy8uGmOPyiix33nooYfST3/603TfffeliEizZ88uOj9jxoxUXV2d5syZk5599tn01a9+NdXV1aV33nmnMGb48OHp+OOPT0899VT6+9//no444oh0wQUXFM7X19enmpqaNHr06LRixYo0a9as1L59+3Trrbdmva8t0aftz5gxY9Lw4cPTm2++Wbht3LixaIz9KZ9hw4al22+/Pa1YsSItX748feUrX0m9e/dOW7ZsKYy5+OKLU21tbZo3b15asmRJ+uIXv5hOPfXUwvn3338/9e3bNw0dOjQtW7YsPfTQQ6lbt25p8uTJhTH/+te/UocOHdKECRPSCy+8kG688cbUunXrNHfu3Oz3uaX5LHv05S9/OV144YVFj6P6+vrCeXtUXuJjP/fxb25NTU2pR48e6de//nXh2KZNm1JlZWWaNWtWSimlF154IUVEWrx4cWHMww8/nCoqKtLrr7+eUkrp97//fercuXNqbGwsjLnqqqvSUUcdleme7Rt2Fx+jRo3a7Z+xP3lt2LAhRUR6/PHHU/rg8XLAAQekv/zlL4UxL774YoqItHDhwpQ+CMxWrVqldevWFcbcfPPNqaqqqrAnV155ZTr22GOL5jrvvPPSsGHDMt2zfcfH9yh9EB9XXHHFbv+MPSovL7tQZPXq1bFu3boYOnRo4Vh1dXUMGDAgFi5cGBERCxcujE6dOkX//v0LY4YOHRqtWrWKRYsWFcYMHjw42rZtWxgzbNiwWLlyZbz99ttZ79O+aP78+dG9e/c46qij4pJLLom33nqrcM7+5FVfXx8REV26dImIiKVLl8b27duLHkNHH3109O7du+gx1K9fv6IfvDhs2LBoaGiIf/zjH4UxH73Gh2M+vAaf3cf36EN33XVXdOvWLfr27RuTJ0+Obdu2Fc7Zo/Jq9t9qy95l3bp1ERE7/TTampqawrl169ZF9+7di863adMmunTpUjSmrq5up2t8eK5z585lvR/7suHDh8fXv/71qKuri1deeSV+8pOfxIgRI2LhwoXRunVr+5NRU1NTjB8/PgYNGhR9+/aN+ODvr23btjv9gsyPP4Z29RiLjzwGdzemoaEh3nnnnWjfvn1Z79u+Yld7FBHxzW9+Mw499NDo1atXPPfcc3HVVVfFypUr47777ouwR2UnPqCFOf/88wv/3a9fvzjuuOPi8MMPj/nz58eQIUOadW37m3HjxsWKFSviiSeeaO6lsBu726OLLrqo8N/9+vWLnj17xpAhQ+KVV16Jww8/vBlWun/xsgtFevToERGx0zvz169fXzjXo0eP2LBhQ9H5999/PzZu3Fg0ZlfX+OgclMZhhx0W3bp1i1WrVkXYn2wuu+yyeOCBB+Kxxx6LQw45pHC8R48e8d5778WmTZuKxn/8MfRpf/+7G1NVVeX/qD+j3e3RrgwYMCAiouhxZI/KR3xQpK6uLnr06BHz5s0rHGtoaIhFixbFwIEDIyJi4MCBsWnTpli6dGlhzKOPPhpNTU2FB/DAgQNjwYIFsX379sKYRx55JI466ihP6ZfYv//973jrrbeiZ8+eEfan7FJKcdlll8Xs2bPj0Ucf3enlq5NPPjkOOOCAosfQypUrY82aNUWPoeeff74oEh955JGoqqqKY445pjDmo9f4cMyH12D3Pm2PdmX58uUREUWPI3tURs39jlfy27x5c1q2bFlatmxZioh0ww03pGXLlqXXXnstpQ8+atupU6d0//33p+eeey6NGjVqlx+1PfHEE9OiRYvSE088kY488siij3Ju2rQp1dTUpG9/+9tpxYoV6Z577kkdOnTwUc7P4JP2Z/PmzenHP/5xWrhwYVq9enX629/+lk466aR05JFHpnfffbdwDftTPpdcckmqrq5O8+fPL/qY5rZt2wpjLr744tS7d+/06KOPpiVLlqSBAwemgQMHFs5/+DHOM888My1fvjzNnTs3HXzwwbv8GOfEiRPTiy++mG666SYf4/yMPm2PVq1alX7xi1+kJUuWpNWrV6f7778/HXbYYWnw4MGFa9ij8hIf+6HHHnssRcROtzFjxqT0wcdtp0yZkmpqalJlZWUaMmRIWrlyZdE13nrrrXTBBRekgw46KFVVVaWxY8emzZs3F4159tln02mnnZYqKyvT5z73uTRjxoys97Ol+qT92bZtWzrzzDPTwQcfnA444IB06KGHpgsvvLDo44DJ/pTVrvYmItLtt99eGPPOO++kSy+9NHXu3Dl16NAhfe1rX0tvvvlm0XVeffXVNGLEiNS+ffvUrVu39KMf/Sht3769aMxjjz2WTjjhhNS2bdt02GGHFc3B7n3aHq1ZsyYNHjw4denSJVVWVqYjjjgiTZw4sejnfCR7VFYV6f9tFABAFt7zAQBkJT4AgKzEBwCQlfgAALISHwBAVuIDAMhKfAAAWYkPACAr8QEAZCU+AICsxAcAkJX4AACy+j/J4r9i/nZCRAAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"\n",
"plt.hist(ppls)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"execution_state": "idle",
"id": "8acad3ce-905d-455e-af5d-9770495f374a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[956.7294281325414,\n",
" 956.7294281325414,\n",
" 956.7294281325414,\n",
" 956.7294281325414,\n",
" 956.7294281325414,\n",
" 956.7294281325414,\n",
" 956.7294281325414,\n",
" 956.7294281325414,\n",
" 956.7294281325414,\n",
" 956.7294281325414,\n",
" 956.7294281325414,\n",
" 956.7294281325414,\n",
" 956.7294281325414,\n",
" 956.7294281325414,\n",
" 956.7294281325414,\n",
" 956.7294281325414,\n",
" 956.7294281325414,\n",
" 956.7294281325414,\n",
" 956.7294281325414,\n",
" 956.7294281325414,\n",
" 956.7294281325414,\n",
" 956.7294281325414,\n",
" 956.7294281325414,\n",
" 956.7294281325414,\n",
" 956.7294281325414,\n",
" 956.7294281325414,\n",
" 956.7294281325414,\n",
" 956.7294281325414,\n",
" 956.7294281325414,\n",
" 956.7294281325414,\n",
" 956.7294281325414,\n",
" 956.7294281325414,\n",
" 956.7294281325414,\n",
" 956.7294281325414,\n",
" 956.7294281325414,\n",
" 956.7294281325414,\n",
" 956.7294281325414,\n",
" 956.7294281325414,\n",
" 956.7294281325414,\n",
" 956.7294281325414]"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ppls"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "86daa05b-5784-457b-b65e-8b8395128d6f",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|