diff options
author | Anthony Wang | 2021-08-24 22:23:46 -0500 |
---|---|---|
committer | Anthony Wang | 2021-08-24 22:23:46 -0500 |
commit | 60e12b8eca838f9aba7f632c43ccc73a47c8ed99 (patch) | |
tree | c9d80959a2d57fce365923b6ef2959a944aff76b | |
parent | b8133346a4a626451436883f35477c8014de4a4b (diff) |
Start working on MNIST net
-rw-r--r-- | mnist.py | 126 |
1 files changed, 126 insertions, 0 deletions
diff --git a/mnist.py b/mnist.py new file mode 100644 index 0000000..2b4085f --- /dev/null +++ b/mnist.py @@ -0,0 +1,126 @@ +import torch +from torch import nn +from torch.autograd import Variable +from torch.utils.data import DataLoader +from torchvision import datasets +from torchvision.transforms import ToTensor, Lambda, Compose +import matplotlib.pyplot as plt + +training_data = datasets.MNIST( + root="data", + train=True, + download=True, + transform=ToTensor(), +) + +test_data = datasets.MNIST( + root="data", + train=False, + download=True, + transform=ToTensor(), +) + +batch_size = 64 + +train_loader = DataLoader(training_data, batch_size=batch_size) +test_loader = DataLoader(test_data, batch_size=batch_size) + + +class CNN(nn.Module): + def __init__(self): + super(CNN, self).__init__() + + self.layer1 = nn.Sequential( + nn.Conv2d(in_channels=1, out_channels=32, kernel_size=3, padding=1), + nn.BatchNorm2d(32), + nn.ReLU(), + nn.MaxPool2d(kernel_size=2, stride=2) + ) + self.layer2 = nn.Sequential( + nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3), + nn.BatchNorm2d(64), + nn.ReLU(), + nn.MaxPool2d(2) + ) + self.fc1 = nn.Linear(in_features=64*6*6, out_features=600) + self.drop = nn.Dropout2d(0.25) + self.fc2 = nn.Linear(in_features=600, out_features=120) + self.fc3 = nn.Linear(in_features=120, out_features=10) + + +def forward(self, x): + out = self.layer1(x) + out = self.layer2(out) + out = out.view(out.size(0), -1) + out = self.fc1(out) + out = self.drop(out) + out = self.fc2(out) + out = self.fc3(out) + return out + + +model = CNN() +error = nn.CrossEntropyLoss() +learning_rate = 0.001 +optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) + + +num_epochs = 5 +count = 0 + +loss_list = [] +iteration_list = [] +accuracy_list = [] + +predictions_list = [] +labels_list = [] + +for epoch in range(num_epochs): + for images, labels in train_loader: + train = Variable(images.view(batch_size, 1, 28, 28)) + labels = Variable(labels) + + outputs = model(train) + loss = error(outputs, labels) + + optimizer.zero_grad() + loss.backward() + optimizer.step() + + count += 1 + + if count % 50 == 0: + total = 0 + correct = 0 + for images, labels in test_loader: + images, labels = images.to(device), labels.to(device) + labels_list.append(labels) + + test = Variable(images.view(batch_size, 1, 28, 28)) + outputs = model(test) + + predictions = torch.max(outputs, 1)[1] + predictions_list.append(predictions) + correct += (predictions == labels).sum() + + total += len(labels) + + accuracy = correct * batch_size / total + loss_list.append(loss.data) + iteration_list.append(count) + accuracy_list.append(accuracy) + + print("Iteration: {}, Loss: {}, Accuracy: {}%".format(count, loss.data, accuracy)) + + +plt.plot(iteration_list, loss_list) +plt.xlabel("No. of Iteration") +plt.ylabel("Loss") +plt.title("Iterations vs Loss") +plt.show() + +plt.plot(iteration_list, accuracy_list) +plt.xlabel("No. of Iteration") +plt.ylabel("Accuracy") +plt.title("Iterations vs Accuracy") +plt.show() |