summaryrefslogtreecommitdiff
path: root/mnist.py
blob: 353a6616459045aaec4e62a45e8980e4f770561a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
#!/usr/bin/python3
import torch
from torch import nn
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor, Lambda, Compose
import matplotlib.pyplot as plt

training_data = datasets.MNIST(
    root=".data",
    train=True,
    download=True,
    transform=ToTensor(),
)

test_data = datasets.MNIST(
    root=".data",
    train=False,
    download=True,
    transform=ToTensor(),
)

batch_size = 100

train_loader = DataLoader(training_data, batch_size=batch_size)
test_loader = DataLoader(test_data, batch_size=batch_size)


class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()

        self.layer1 = nn.Sequential(
            nn.Conv2d(in_channels=1, out_channels=32, kernel_size=3,
                      padding=1), nn.BatchNorm2d(32), nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2))
        self.layer2 = nn.Sequential(
            nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3),
            nn.BatchNorm2d(64), nn.ReLU(), nn.MaxPool2d(2))
        self.fc1 = nn.Linear(in_features=64 * 6 * 6, out_features=600)
        self.drop = nn.Dropout2d(0.25)
        self.fc2 = nn.Linear(in_features=600, out_features=120)
        self.fc3 = nn.Linear(in_features=120, out_features=10)

    def forward(self, x):
        out = self.layer1(x)
        out = self.layer2(out)
        out = out.view(out.size(0), -1)
        out = self.fc1(out)
        out = self.drop(out)
        out = self.fc2(out)
        out = self.fc3(out)
        return out


device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

model = CNN()
model.to(device)
error = nn.CrossEntropyLoss()
learning_rate = 0.001
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

num_epochs = 5
count = 0

loss_list = []
iteration_list = []
accuracy_list = []

predictions_list = []
labels_list = []

for epoch in range(num_epochs):
    for images, labels in train_loader:
        images, labels = images.to(device), labels.to(device)

        train = Variable(images.view(batch_size, 1, 28, 28))
        labels = Variable(labels)

        outputs = model(train)
        loss = error(outputs, labels)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        count += 1

        if count % 50 == 0:
            total = 0
            correct = 0
            for images, labels in test_loader:
                images, labels = images.to(device), labels.to(device)

                labels_list.append(labels)

                test = Variable(images.view(batch_size, 1, 28, 28))
                outputs = model(test)

                predictions = torch.max(outputs, 1)[1].to(device)
                predictions_list.append(predictions)
                correct += (predictions == labels).sum()

                total += len(labels)

            accuracy = correct * batch_size / total
            loss_list.append(loss.data)
            iteration_list.append(count)
            accuracy_list.append(accuracy)

            print("Iteration: {}, Loss: {}, Accuracy: {}%".format(
                count, loss.data, accuracy))

torch.save(model.state_dict(), "model.pth")
print("Saved PyTorch Model State to model.pth")

plt.plot(iteration_list, loss_list)
plt.xlabel("No. of Iteration")
plt.ylabel("Loss")
plt.title("Iterations vs Loss")
plt.savefig("loss.png")

plt.plot(iteration_list, accuracy_list)
plt.xlabel("No. of Iteration")
plt.ylabel("Accuracy")
plt.title("Iterations vs Accuracy")
plt.savefig("accuracy.png")