summaryrefslogtreecommitdiff
path: root/mnist.py
blob: b11dcbae1019a169fdbf3f93c0bd8521a1b14eff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import torch
from torch import nn
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor, Lambda, Compose
import matplotlib.pyplot as plt


training_data = datasets.MNIST(
    root=".data",
    train=True,
    download=True,
    transform=ToTensor(),
)

test_data = datasets.MNIST(
    root=".data",
    train=False,
    download=True,
    transform=ToTensor(),
)


batch_size = 100

train_loader = DataLoader(training_data, batch_size=batch_size)
test_loader = DataLoader(test_data, batch_size=batch_size)


class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()

        self.layer1 = nn.Sequential(
            nn.Conv2d(in_channels=1, out_channels=32, kernel_size=3, padding=1),
            nn.BatchNorm2d(32),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2)
        )
        self.layer2 = nn.Sequential(
            nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.MaxPool2d(2)
        )
        self.fc1 = nn.Linear(in_features=64*6*6, out_features=600)
        self.drop = nn.Dropout2d(0.25)
        self.fc2 = nn.Linear(in_features=600, out_features=120)
        self.fc3 = nn.Linear(in_features=120, out_features=10)

    def forward(self, x):
        out = self.layer1(x)
        out = self.layer2(out)
        out = out.view(out.size(0), -1)
        out = self.fc1(out)
        out = self.drop(out)
        out = self.fc2(out)
        out = self.fc3(out)
        return out


model = CNN()
error = nn.CrossEntropyLoss()
learning_rate = 0.001
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)


num_epochs = 5
count = 0

loss_list = []
iteration_list = []
accuracy_list = []

predictions_list = []
labels_list = []

for epoch in range(num_epochs):
    for images, labels in train_loader:
        train = Variable(images.view(batch_size, 1, 28, 28))
        labels = Variable(labels)

        outputs = model(train)
        loss = error(outputs, labels)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        count += 1

        if count % 50 == 0:
            total = 0
            correct = 0
            for images, labels in test_loader:
                labels_list.append(labels)
            
                test = Variable(images.view(batch_size, 1, 28, 28))
                outputs = model(test)
            
                predictions = torch.max(outputs, 1)[1]
                predictions_list.append(predictions)
                correct += (predictions == labels).sum()
            
                total += len(labels)
            
            accuracy = correct * batch_size / total
            loss_list.append(loss.data)
            iteration_list.append(count)
            accuracy_list.append(accuracy)

            print("Iteration: {}, Loss: {}, Accuracy: {}%".format(count, loss.data, accuracy))


torch.save(model.state_dict(), "model.pth")
print("Saved PyTorch Model State to model.pth")


plt.plot(iteration_list, loss_list)
plt.xlabel("No. of Iteration")
plt.ylabel("Loss")
plt.title("Iterations vs Loss")
plt.savefig("loss.png")

plt.plot(iteration_list, accuracy_list)
plt.xlabel("No. of Iteration")
plt.ylabel("Accuracy")
plt.title("Iterations vs Accuracy")
plt.savefig("accuracy.png")