aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorSIPB2024-11-17 20:17:29 +0000
committerSIPB2024-11-17 20:17:29 +0000
commite953b3752e2ce588395de7ec48e32f3276c0c435 (patch)
tree82f3776c4ee1335abf4b14757ea051c5052ea995
parente460b0ae66be6c8c897d5880c54e4c2bc1b38aad (diff)
Use bfloat16
-rw-r--r--transformer_shortest_paths.ipynb410
1 files changed, 313 insertions, 97 deletions
diff --git a/transformer_shortest_paths.ipynb b/transformer_shortest_paths.ipynb
index fcb24c7..fe0223c 100644
--- a/transformer_shortest_paths.ipynb
+++ b/transformer_shortest_paths.ipynb
@@ -11,8 +11,7 @@
},
{
"cell_type": "code",
- "execution_count": 2,
- "execution_state": "idle",
+ "execution_count": 1,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
@@ -23,13 +22,11 @@
"outputs": [],
"source": [
"from collections import deque\n",
- "import pickle\n",
"# using tqdm.auto glitches out collaborative editing\n",
"from tqdm import tqdm\n",
"\n",
"import torch\n",
"import torch.nn as nn\n",
- "import pickle\n",
"from math import sqrt\n",
"from torch.utils.data import DataLoader, TensorDataset\n",
"import matplotlib.pyplot as plt\n",
@@ -37,9 +34,6 @@
"torch.manual_seed(42)\n",
"\n",
"import os\n",
- "from IPython.display import clear_output\n",
- "import ipdb\n",
- "\n",
"import random\n",
"random.seed(42)\n",
"\n",
@@ -49,8 +43,7 @@
},
{
"cell_type": "code",
- "execution_count": 3,
- "execution_state": "idle",
+ "execution_count": 2,
"metadata": {
"id": "lylOX2POPwFL"
},
@@ -78,8 +71,7 @@
},
{
"cell_type": "code",
- "execution_count": 18,
- "execution_state": "idle",
+ "execution_count": 3,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
@@ -150,7 +142,7 @@
" distance1.append(dist)\n",
" \n",
" data = torch.tensor(graphs1, device=device)\n",
- " labels = torch.tensor(distance1, dtype=torch.float32, device=device)\n",
+ " labels = torch.tensor(distance1, dtype=torch.bfloat16, device=device)\n",
" padding = data == PAD_TOKEN\n",
" return data, labels, padding\n",
"\n",
@@ -193,26 +185,25 @@
" break\n",
" \n",
" data = torch.tensor(graphs2, device=device)\n",
- " labels = torch.tensor(distance2, dtype=torch.float32, device=device)\n",
+ " labels = torch.tensor(distance2, dtype=torch.bfloat16, device=device)\n",
" padding = data == PAD_TOKEN\n",
" return data, labels, padding"
]
},
{
"cell_type": "code",
- "execution_count": 41,
- "execution_state": "idle",
+ "execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
- "(array([255., 0., 298., 0., 231., 0., 210., 0., 123., 0., 63.,\n",
- " 0., 31., 0., 46., 0., 39., 0., 35., 0., 40., 0.,\n",
- " 35., 0., 44., 0., 24., 0., 37., 0., 26., 0., 0.,\n",
- " 39., 0., 31., 0., 31., 0., 38., 0., 34., 0., 36.,\n",
- " 0., 33., 0., 33., 0., 22., 0., 38., 0., 28., 0.,\n",
- " 34., 0., 26., 0., 30., 0., 26., 0., 32.]),\n",
+ "(array([252., 0., 309., 0., 278., 0., 199., 0., 119., 0., 63.,\n",
+ " 0., 23., 0., 45., 0., 36., 0., 36., 0., 28., 0.,\n",
+ " 37., 0., 23., 0., 33., 0., 24., 0., 34., 0., 0.,\n",
+ " 30., 0., 33., 0., 34., 0., 34., 0., 25., 0., 33.,\n",
+ " 0., 39., 0., 33., 0., 20., 0., 29., 0., 27., 0.,\n",
+ " 35., 0., 37., 0., 30., 0., 33., 0., 37.]),\n",
" array([ 1. , 1.484375, 1.96875 , 2.453125, 2.9375 , 3.421875,\n",
" 3.90625 , 4.390625, 4.875 , 5.359375, 5.84375 , 6.328125,\n",
" 6.8125 , 7.296875, 7.78125 , 8.265625, 8.75 , 9.234375,\n",
@@ -227,13 +218,13 @@
" <BarContainer object of 64 artists>)"
]
},
- "execution_count": 41,
+ "execution_count": 4,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAivElEQVR4nO3df1BVdeL/8RegXH/BJVS4sAL+KpEUa0nxTuXHFVZE1tWVZrTcstbR0YVmlTKlMTV3Z3Gt6eeQzs62UjOS5U7qSGUpJm4ralKOv4pRhxZbvNDqwFWMH8L5/vHJ+/3c/EEocN/A8zFzZrjnvO+973M85dNzf+BnWZYlAAAAg/j7egIAAAA/RqAAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAME4PX0/gVjQ3N6uiokJBQUHy8/Pz9XQAAMBPYFmWLl68qMjISPn73/waSacMlIqKCkVFRfl6GgAA4BacPXtWgwYNuumYThkoQUFB0g87GBwc7OvpAACAn8DtdisqKsrz9/jNdMpAufqyTnBwMIECAEAn81PensGbZAEAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGaVWgrF+/XvHx8Z4vSHM6nfroo4882+vq6pSRkaH+/furX79+Sk9PV2VlpddjlJeXKy0tTX369FFYWJiWLl2qK1eutN0eAQCATq9VgTJo0CCtXbtWJSUlOnz4sCZNmqTp06frxIkTkqQlS5Zox44d2rJli4qKilRRUaGZM2d67t/U1KS0tDQ1NDRo//79euutt5SXl6eVK1e2/Z4BAIBOy8+yLOt2HiA0NFQvvPCCHnroIQ0cOFD5+fl66KGHJElff/21Ro4cqeLiYo0fP14fffSRfvWrX6miokLh4eGSpA0bNmjZsmX67rvvFBgY+JOe0+12y263q6amhq+6BwCgk2jN39+3/B6UpqYmbd68WbW1tXI6nSopKVFjY6OSk5M9Y2JjYxUdHa3i4mJJUnFxsUaPHu2JE0lKSUmR2+32XIW5nvr6erndbq8FAAB0Xa0OlGPHjqlfv36y2WxauHChtm7dqri4OLlcLgUGBiokJMRrfHh4uFwulyTJ5XJ5xcnV7Ve33UhOTo7sdrtniYqKau20AQBAJ9LqQBkxYoSOHDmigwcPatGiRZo7d65OnjzZPrP7QXZ2tmpqajzL2bNn2/X5AACAb/Vo7R0CAwM1fPhwSVJCQoI+//xzvfrqq5o1a5YaGhpUXV3tdRWlsrJSDodDkuRwOHTo0CGvx7v6KZ+rY67HZrPJZrO1dqodbvDyD2647Zu1aR06FwAAOrPb/h6U5uZm1dfXKyEhQT179lRhYaFnW2lpqcrLy+V0OiVJTqdTx44dU1VVlWfMrl27FBwcrLi4uNudCgAA6CJadQUlOztbqampio6O1sWLF5Wfn6+9e/fq448/lt1u17x585SVlaXQ0FAFBwfrySeflNPp1Pjx4yVJkydPVlxcnB599FGtW7dOLpdLK1asUEZGRqe4QgIAADpGqwKlqqpKjz32mM6dOye73a74+Hh9/PHH+uUvfylJevnll+Xv76/09HTV19crJSVFb7zxhuf+AQEBKigo0KJFi+R0OtW3b1/NnTtXa9asafs9AwAAndZtfw+KL5j6PSi8BwUAgBvrkO9BAQAAaC8ECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADBOD19PwESDl39ww23frE3r0LkAANAdcQUFAAAYp1WBkpOTo7FjxyooKEhhYWGaMWOGSktLvcZMnDhRfn5+XsvChQu9xpSXlystLU19+vRRWFiYli5dqitXrrTNHgEAgE6vVS/xFBUVKSMjQ2PHjtWVK1f07LPPavLkyTp58qT69u3rGTd//nytWbPGc7tPnz6en5uampSWliaHw6H9+/fr3Llzeuyxx9SzZ0/9+c9/bqv9AgAAnVirAmXnzp1et/Py8hQWFqaSkhJNmDDBs75Pnz5yOBzXfYxPPvlEJ0+e1O7duxUeHq577rlHf/zjH7Vs2TKtXr1agYGBt7ovAACgi7it96DU1NRIkkJDQ73Wb9q0SQMGDNCoUaOUnZ2ty5cve7YVFxdr9OjRCg8P96xLSUmR2+3WiRMnrvs89fX1crvdXgsAAOi6bvlTPM3NzVq8eLHuv/9+jRo1yrP+kUceUUxMjCIjI3X06FEtW7ZMpaWlev/99yVJLpfLK04keW67XK7rPldOTo6ef/75W50qAADoZG45UDIyMnT8+HF99tlnXusXLFjg+Xn06NGKiIhQUlKSzpw5o2HDht3Sc2VnZysrK8tz2+12Kyoq6lanDgAADHdLL/FkZmaqoKBAn376qQYNGnTTsYmJiZKk06dPS5IcDocqKyu9xly9faP3rdhsNgUHB3stAACg62pVoFiWpczMTG3dulV79uzRkCFDWrzPkSNHJEkRERGSJKfTqWPHjqmqqsozZteuXQoODlZcXFzr9wAAAHQ5rXqJJyMjQ/n5+dq+fbuCgoI87xmx2+3q3bu3zpw5o/z8fE2dOlX9+/fX0aNHtWTJEk2YMEHx8fGSpMmTJysuLk6PPvqo1q1bJ5fLpRUrVigjI0M2m6199hIAAHQqrbqCsn79etXU1GjixImKiIjwLO+++64kKTAwULt379bkyZMVGxurp556Sunp6dqxY4fnMQICAlRQUKCAgAA5nU799re/1WOPPeb1vSkAAKB7a9UVFMuybro9KipKRUVFLT5OTEyMPvzww9Y8NQAA6Eb4XTwAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIzTw9cTgDR4+Qc33PbN2rQOnQsAACbgCgoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4PXw9Ady6wcs/uOG2b9amdehcAABoS1xBAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGCcVgVKTk6Oxo4dq6CgIIWFhWnGjBkqLS31GlNXV6eMjAz1799f/fr1U3p6uiorK73GlJeXKy0tTX369FFYWJiWLl2qK1eutM0eAQCATq9VgVJUVKSMjAwdOHBAu3btUmNjoyZPnqza2lrPmCVLlmjHjh3asmWLioqKVFFRoZkzZ3q2NzU1KS0tTQ0NDdq/f7/eeust5eXlaeXKlW27ZwAAoNNq1TfJ7ty50+t2Xl6ewsLCVFJSogkTJqimpkZvvvmm8vPzNWnSJEnSxo0bNXLkSB04cEDjx4/XJ598opMnT2r37t0KDw/XPffcoz/+8Y9atmyZVq9ercDAwLbdQwAA0Onc1ntQampqJEmhoaGSpJKSEjU2Nio5OdkzJjY2VtHR0SouLpYkFRcXa/To0QoPD/eMSUlJkdvt1okTJ677PPX19XK73V4LAADoum45UJqbm7V48WLdf//9GjVqlCTJ5XIpMDBQISEhXmPDw8Plcrk8Y/5vnFzdfnXb9eTk5Mhut3uWqKioW502AADoBG45UDIyMnT8+HFt3ry5bWd0HdnZ2aqpqfEsZ8+ebffnBAAAvnNLv804MzNTBQUF2rdvnwYNGuRZ73A41NDQoOrqaq+rKJWVlXI4HJ4xhw4d8nq8q5/yuTrmx2w2m2w2261MFQAAdEKtuoJiWZYyMzO1detW7dmzR0OGDPHanpCQoJ49e6qwsNCzrrS0VOXl5XI6nZIkp9OpY8eOqaqqyjNm165dCg4OVlxc3O3vEQAA6PRadQUlIyND+fn52r59u4KCgjzvGbHb7erdu7fsdrvmzZunrKwshYaGKjg4WE8++aScTqfGjx8vSZo8ebLi4uL06KOPat26dXK5XFqxYoUyMjK4SgIAAKTWBsr69eslSRMnTvRav3HjRj3++OOSpJdffln+/v5KT09XfX29UlJS9MYbb3jGBgQEqKCgQIsWLZLT6VTfvn01d+5crVmzpm32CAAAdHqtChTLsloc06tXL+Xm5io3N/eGY2JiYvThhx+25qkBAEA3wu/iAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGKfVgbJv3z5NmzZNkZGR8vPz07Zt27y2P/744/Lz8/NapkyZ4jXmwoULmjNnjoKDgxUSEqJ58+bp0qVLt783AACgS2h1oNTW1mrMmDHKzc294ZgpU6bo3LlznuWdd97x2j5nzhydOHFCu3btUkFBgfbt26cFCxbc2h4AAIAup0dr75CamqrU1NSbjrHZbHI4HNfd9tVXX2nnzp36/PPPdd9990mSXn/9dU2dOlUvvviiIiMjWzslAADQxbTLe1D27t2rsLAwjRgxQosWLdL58+c924qLixUSEuKJE0lKTk6Wv7+/Dh48eN3Hq6+vl9vt9loAAEDX1eaBMmXKFL399tsqLCzUX/7yFxUVFSk1NVVNTU2SJJfLpbCwMK/79OjRQ6GhoXK5XNd9zJycHNntds8SFRXV1tMGAAAGafVLPC2ZPXu25+fRo0crPj5ew4YN0969e5WUlHRLj5mdna2srCzPbbfbTaQAANCFtfvHjIcOHaoBAwbo9OnTkiSHw6GqqiqvMVeuXNGFCxdu+L4Vm82m4OBgrwUAAHRd7R4o3377rc6fP6+IiAhJktPpVHV1tUpKSjxj9uzZo+bmZiUmJrb3dAAAQCfQ6pd4Ll265LkaIkllZWU6cuSIQkNDFRoaqueff17p6elyOBw6c+aMnnnmGQ0fPlwpKSmSpJEjR2rKlCmaP3++NmzYoMbGRmVmZmr27Nl8ggcAAEi3cgXl8OHDuvfee3XvvfdKkrKysnTvvfdq5cqVCggI0NGjR/XrX/9ad911l+bNm6eEhAT985//lM1m8zzGpk2bFBsbq6SkJE2dOlUPPPCA/vrXv7btngEAgE6r1VdQJk6cKMuybrj9448/bvExQkNDlZ+f39qnBgAA3QS/iwcAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABinh68ngI43ePkHN9z2zdq0Dp0LAADXwxUUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGKfVgbJv3z5NmzZNkZGR8vPz07Zt27y2W5allStXKiIiQr1791ZycrJOnTrlNebChQuaM2eOgoODFRISonnz5unSpUu3vzcAAKBLaHWg1NbWasyYMcrNzb3u9nXr1um1117Thg0bdPDgQfXt21cpKSmqq6vzjJkzZ45OnDihXbt2qaCgQPv27dOCBQtub08AAECX0aO1d0hNTVVqaup1t1mWpVdeeUUrVqzQ9OnTJUlvv/22wsPDtW3bNs2ePVtfffWVdu7cqc8//1z33XefJOn111/X1KlT9eKLLyoyMvJ29wkAAHRybfoelLKyMrlcLiUnJ3vW2e12JSYmqri4WJJUXFyskJAQT5xIUnJysvz9/XXw4MHrPm59fb3cbrfXAgAAuq42DRSXyyVJCg8P91ofHh7u2eZyuRQWFua1vUePHgoNDfWM+bGcnBzZ7XbPEhUV1ZbTBgAAhukUn+LJzs5WTU2NZzl79qyvpwQAANpRmwaKw+GQJFVWVnqtr6ys9GxzOByqqqry2n7lyhVduHDBM+bHbDabgoODvRYAANB1tWmgDBkyRA6HQ4WFhZ51brdbBw8elNPplCQ5nU5VV1erpKTEM2bPnj1qbm5WYmJiW04HAAB0Uq3+FM+lS5d0+vRpz+2ysjIdOXJEoaGhio6O1uLFi/WnP/1Jd955p4YMGaLnnntOkZGRmjFjhiRp5MiRmjJliubPn68NGzaosbFRmZmZmj17Np/gAQAA0q0EyuHDh/WLX/zCczsrK0uSNHfuXOXl5emZZ55RbW2tFixYoOrqaj3wwAPauXOnevXq5bnPpk2blJmZqaSkJPn7+ys9PV2vvfZaW+0TAADo5FodKBMnTpRlWTfc7ufnpzVr1mjNmjU3HBMaGqr8/PzWPjUAAOgmOsWneAAAQPdCoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIzTw9cTQOcxePkHN9z2zdq0Dp0LAKBr4woKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjNPmgbJ69Wr5+fl5LbGxsZ7tdXV1ysjIUP/+/dWvXz+lp6ersrKyracBAAA6sXa5gnL33Xfr3LlznuWzzz7zbFuyZIl27NihLVu2qKioSBUVFZo5c2Z7TAMAAHRS7fLLAnv06CGHw3HN+pqaGr355pvKz8/XpEmTJEkbN27UyJEjdeDAAY0fP749pgMAADqZdrmCcurUKUVGRmro0KGaM2eOysvLJUklJSVqbGxUcnKyZ2xsbKyio6NVXFx8w8err6+X2+32WgAAQNfV5oGSmJiovLw87dy5U+vXr1dZWZkefPBBXbx4US6XS4GBgQoJCfG6T3h4uFwu1w0fMycnR3a73bNERUW19bQBAIBB2vwlntTUVM/P8fHxSkxMVExMjN577z317t37lh4zOztbWVlZnttut5tIAQCgC2v3jxmHhITorrvu0unTp+VwONTQ0KDq6mqvMZWVldd9z8pVNptNwcHBXgsAAOi62j1QLl26pDNnzigiIkIJCQnq2bOnCgsLPdtLS0tVXl4up9PZ3lMBAACdRJu/xPP0009r2rRpiomJUUVFhVatWqWAgAA9/PDDstvtmjdvnrKyshQaGqrg4GA9+eSTcjqdfIIHAAB4tHmgfPvtt3r44Yd1/vx5DRw4UA888IAOHDiggQMHSpJefvll+fv7Kz09XfX19UpJSdEbb7zR1tNAFzB4+Qc33PbN2rQOnQsAoGO1eaBs3rz5ptt79eql3Nxc5ebmtvVTAwCALqJdvqgNQPvi6hKAro5fFggAAIxDoAAAAOMQKAAAwDgECgAAMA5vkgXaAG9aBYC2RaCgyyEWujb+fIHugUABgHZASLU9jmn3wntQAACAcbiCAqBF/MsVQEcjUACgiyAk0ZUQKMAPbvY/d7XT/+D5CwUAro9AAQDDEK5m4M/BtwgUAOjmbvUvYv4CR3siUAAA6KZMjkw+ZgwAAIzDFRS0O5MLHd0HL2MAnQuBAgCAAYhhb7zEAwAAjMMVFABAl8aVic6JKygAAMA4BAoAADAOL/EAaDdcWkd31NHnfVf974wrKAAAwDhcQQG6ka76Ly0AXQ9XUAAAgHG4ggIA6FBcycNPwRUUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYByfBkpubq4GDx6sXr16KTExUYcOHfLldAAAgCF8FijvvvuusrKytGrVKn3xxRcaM2aMUlJSVFVV5aspAQAAQ/gsUF566SXNnz9fTzzxhOLi4rRhwwb16dNHf//73301JQAAYIgevnjShoYGlZSUKDs727PO399fycnJKi4uvmZ8fX296uvrPbdramokSW63u13m11x/+Ybbbvac3K/r3s8Xz9md73cznWUfbmffO8tcuV/nvt/t3vdWXH1My7JaHmz5wH/+8x9LkrV//36v9UuXLrXGjRt3zfhVq1ZZklhYWFhYWFi6wHL27NkWW8EnV1BaKzs7W1lZWZ7bzc3NunDhgvr37y8/P79rxrvdbkVFRens2bMKDg7u4Nl2DhyjlnGMbo7j0zKOUcs4RjfX1Y6PZVm6ePGiIiMjWxzrk0AZMGCAAgICVFlZ6bW+srJSDofjmvE2m002m81rXUhISIvPExwc3CX+QNsTx6hlHKOb4/i0jGPUMo7RzXWl42O323/SOJ+8STYwMFAJCQkqLCz0rGtublZhYaGcTqcvpgQAAAzis5d4srKyNHfuXN13330aN26cXnnlFdXW1uqJJ57w1ZQAAIAhfBYos2bN0nfffaeVK1fK5XLpnnvu0c6dOxUeHn7bj22z2bRq1aprXhbC/8cxahnH6OY4Pi3jGLWMY3Rz3fn4+Fk/6bM+AAAAHYffxQMAAIxDoAAAAOMQKAAAwDgECgAAME6XDJTc3FwNHjxYvXr1UmJiog4dOuTrKRlj9erV8vPz81piY2N9PS2f2bdvn6ZNm6bIyEj5+flp27ZtXtsty9LKlSsVERGh3r17Kzk5WadOnfLZfH2hpWP0+OOPX3NOTZkyxWfz7Wg5OTkaO3asgoKCFBYWphkzZqi0tNRrTF1dnTIyMtS/f3/169dP6enp13xRZVf2U47RxIkTrzmPFi5c6LM5d7T169crPj7e84VsTqdTH330kWd7dzyHulygvPvuu8rKytKqVav0xRdfaMyYMUpJSVFVVZWvp2aMu+++W+fOnfMsn332ma+n5DO1tbUaM2aMcnNzr7t93bp1eu2117RhwwYdPHhQffv2VUpKiurq6jp8rr7S0jGSpClTpnidU++8806HztGXioqKlJGRoQMHDmjXrl1qbGzU5MmTVVtb6xmzZMkS7dixQ1u2bFFRUZEqKio0c+ZMn867I/2UYyRJ8+fP9zqP1q1b57M5d7RBgwZp7dq1Kikp0eHDhzVp0iRNnz5dJ06ckLrrOdSWvwTQBOPGjbMyMjI8t5uamqzIyEgrJyfHp/MyxapVq6wxY8b4ehpGkmRt3brVc7u5udlyOBzWCy+84FlXXV1t2Ww265133vHRLH3rx8fIsixr7ty51vTp0302J9NUVVVZkqyioiLL+uGc6dmzp7VlyxbPmK+++sqSZBUXF/twpr7z42NkWZb1P//zP9Yf/vAHn87LNHfccYf1t7/9rdueQ13qCkpDQ4NKSkqUnJzsWefv76/k5GQVFxf7dG4mOXXqlCIjIzV06FDNmTNH5eXlvp6SkcrKyuRyubzOJ7vdrsTERM6nH9m7d6/CwsI0YsQILVq0SOfPn/f1lHympqZGkhQaGipJKikpUWNjo9d5FBsbq+jo6G57Hv34GF21adMmDRgwQKNGjVJ2drYuX77soxn6VlNTkzZv3qza2lo5nc5uew51it9m/FP997//VVNT0zXfRhseHq6vv/7aZ/MySWJiovLy8jRixAidO3dOzz//vB588EEdP35cQUFBvp6eUVwul/TD+fN/hYeHe7bhf1/emTlzpoYMGaIzZ87o2WefVWpqqoqLixUQEODr6XWo5uZmLV68WPfff79GjRol/XAeBQYGXvMLTrvreXS9YyRJjzzyiGJiYhQZGamjR49q2bJlKi0t1fvvv+/T+XakY8eOyel0qq6uTv369dPWrVsVFxenI0eOdMtzqEsFClqWmprq+Tk+Pl6JiYmKiYnRe++9p3nz5vl0buicZs+e7fl59OjRio+P17Bhw7R3714lJSX5dG4dLSMjQ8ePH+/W7+tqyY2O0YIFCzw/jx49WhEREUpKStKZM2c0bNgwH8y0440YMUJHjhxRTU2N/vGPf2ju3LkqKiry9bR8pku9xDNgwAAFBARc887myspKORwOn83LZCEhIbrrrrt0+vRpX0/FOFfPGc6n1hk6dKgGDBjQ7c6pzMxMFRQU6NNPP9WgQYM86x0OhxoaGlRdXe01vjueRzc6RteTmJgoSd3qPAoMDNTw4cOVkJCgnJwcjRkzRq+++mq3PYe6VKAEBgYqISFBhYWFnnXNzc0qLCyU0+n06dxMdenSJZ05c0YRERG+nopxhgwZIofD4XU+ud1uHTx4kPPpJr799ludP3++25xTlmUpMzNTW7du1Z49ezRkyBCv7QkJCerZs6fXeVRaWqry8vJucx61dIyu58iRI5LUbc6j62lublZ9fX33PYd8/S7dtrZ582bLZrNZeXl51smTJ60FCxZYISEhlsvl8vXUjPDUU09Ze/futcrKyqx//etfVnJysjVgwACrqqrK11PziYsXL1pffvml9eWXX1qSrJdeesn68ssvrX//+9+WZVnW2rVrrZCQEGv79u3W0aNHrenTp1tDhgyxvv/+e19PvcPc7BhdvHjRevrpp63i4mKrrKzM2r17t/Xzn//cuvPOO626ujpfT71DLFq0yLLb7dbevXutc+fOeZbLly97xixcuNCKjo629uzZYx0+fNhyOp2W0+n06bw7UkvH6PTp09aaNWusw4cPW2VlZdb27dutoUOHWhMmTPD11DvM8uXLraKiIqusrMw6evSotXz5csvPz8/65JNPLKubnkNdLlAsy7Jef/11Kzo62goMDLTGjRtnHThwwNdTMsasWbOsiIgIKzAw0PrZz35mzZo1yzp9+rSvp+Uzn376qSXpmmXu3LmW9cNHjZ977jkrPDzcstlsVlJSklVaWurraXeomx2jy5cvW5MnT7YGDhxo9ezZ04qJibHmz5/frf5BcL1jI8nauHGjZ8z3339v/f73v7fuuOMOq0+fPtZvfvMb69y5cz6dd0dq6RiVl5dbEyZMsEJDQy2bzWYNHz7cWrp0qVVTU+PrqXeY3/3ud1ZMTIwVGBhoDRw40EpKSvLEidVNzyE/639PHgAAAGN0qfegAACAroFAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYJz/B1g6lyYuVsaFAAAAAElFTkSuQmCC",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAiy0lEQVR4nO3df1BVdeL/8RegXH9xL6HChRXxV4nkj1pSvFO5rrAisq6uNJPllrWOTu6lWaVMaUzLdhbXmn4O6exsqzUjWe6kjlSWYuK2oiXF+KsYdWixhQutjlzFQITz/WPH+/3c/EEoct9cno+ZM8M9533vfZ+zp+XpuT8IsSzLEgAAgEFCAz0BAACAHyNQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABinW6AncD1aWlpUVVWliIgIhYSEBHo6AADgJ7AsS2fPnlVcXJxCQ699jaRTBkpVVZXi4+MDPQ0AAHAdTp48qQEDBlxzTKcMlIiICEn/20G73R7g2QAAgJ/C6/UqPj7e93v8WjploFx6WcdutxMoAAB0Mj/l7Rm8SRYAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMbpFugJBJNBSz+46rZvV2V24EwAAOjcuIICAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIzTpkBZs2aNRo8eLbvdLrvdLpfLpY8++si3vaGhQW63W3379lWfPn2UlZWlmpoav8eorKxUZmamevXqpejoaC1evFgXL15sn70BAABBoU2BMmDAAK1atUqlpaU6cOCAJk2apOnTp+vIkSOSpEWLFmnbtm3atGmTiouLVVVVpZkzZ/ru39zcrMzMTF24cEF79+7VW2+9pfXr12v58uXtu1cAAKBTC7Esy7qRB4iKitILL7yg++67T/3791dBQYHuu+8+SdI333yjESNGqKSkROPHj9dHH32kX//616qqqlJMTIwkae3atVqyZIm+//57hYeH/6Tn9Hq9cjgcqqurk91uv5Hptyu+BwUAgKtry+/v634PSnNzszZu3Kj6+nq5XC6VlpaqqalJaWlpvjGJiYkaOHCgSkpKJEklJSUaNWqUL04kKT09XV6v13cVBgAAoM3fJHvo0CG5XC41NDSoT58+2rx5s5KSklRWVqbw8HBFRkb6jY+JiZHH45EkeTwevzi5tP3StqtpbGxUY2Oj77bX623rtAEAQCfS5isow4cPV1lZmfbv368FCxZozpw5Onr06M2Ym09eXp4cDodviY+Pv6nPBwAAAqvNgRIeHq5hw4YpOTlZeXl5GjNmjF599VU5nU5duHBBZ86c8RtfU1Mjp9MpSXI6nZd9qufS7UtjriQ3N1d1dXW+5eTJk22dNgAA6ERu+HtQWlpa1NjYqOTkZHXv3l1FRUW+beXl5aqsrJTL5ZIkuVwuHTp0SLW1tb4xO3bskN1uV1JS0lWfw2az+T7afGkBAADBq03vQcnNzVVGRoYGDhyos2fPqqCgQLt379bHH38sh8OhuXPnKicnR1FRUbLb7Xr88cflcrk0fvx4SdLkyZOVlJSkhx56SKtXr5bH49GyZcvkdrtls9luyg4CAIDOp02BUltbq4cffljV1dVyOBwaPXq0Pv74Y/3qV7+SJL388ssKDQ1VVlaWGhsblZ6erjfeeMN3/7CwMBUWFmrBggVyuVzq3bu35syZo5UrV7bvXgEAgE7thr8HJRD4HhQAADqfDvkeFAAAgJuFQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcboFegKQBi394Krbvl2V2YEzAQDADFxBAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcdoUKHl5eRo7dqwiIiIUHR2tGTNmqLy83G/MxIkTFRIS4rc89thjfmMqKyuVmZmpXr16KTo6WosXL9bFixdvfG8AAEBQ6NaWwcXFxXK73Ro7dqwuXryop59+WpMnT9bRo0fVu3dv37h58+Zp5cqVvtu9evXy/dzc3KzMzEw5nU7t3btX1dXVevjhh9W9e3f9+c9/boddAgAAnV2bAmX79u1+t9evX6/o6GiVlpZqwoQJvvW9evWS0+m84mN88sknOnr0qHbu3KmYmBjdcccdev7557VkyRI9++yzCg8Pv47daF+Dln5w1W3frsrswJkAANA13dB7UOrq6iRJUVFRfus3bNigfv36aeTIkcrNzdX58+d920pKSjRq1CjFxMT41qWnp8vr9erIkSNXfJ7GxkZ5vV6/BQAABK82XUH5v1paWrRw4ULdfffdGjlypG/9gw8+qISEBMXFxengwYNasmSJysvL9f7770uSPB6PX5xI8t32eDxXfK68vDw999xz1ztVAADQyVx3oLjdbh0+fFifffaZ3/r58+f7fh41apRiY2OVmpqqEydOaOjQodf1XLm5ucrJyfHd9nq9io+Pv76JAwAA413XSzzZ2dkqLCzUp59+qgEDBlxzbEpKiiTp+PHjkiSn06mamhq/MZduX+19KzabTXa73W8BAADBq02BYlmWsrOztXnzZu3atUuDBw9u9T5lZWWSpNjYWEmSy+XSoUOHVFtb6xuzY8cO2e12JSUltWU6AAAgSLXpJR63262CggJt3bpVERERvveMOBwO9ezZUydOnFBBQYGmTp2qvn376uDBg1q0aJEmTJig0aNHS5ImT56spKQkPfTQQ1q9erU8Ho+WLVsmt9stm83W/nsIAAA6nTZdQVmzZo3q6uo0ceJExcbG+pZ3331XkhQeHq6dO3dq8uTJSkxM1BNPPKGsrCxt27bN9xhhYWEqLCxUWFiYXC6Xfve73+nhhx/2+94UAADQtbXpCoplWdfcHh8fr+Li4lYfJyEhQR9++GFbnhoAAHQh/C0eAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGKdNgZKXl6exY8cqIiJC0dHRmjFjhsrLy/3GNDQ0yO12q2/fvurTp4+ysrJUU1PjN6ayslKZmZnq1auXoqOjtXjxYl28ePHG9wYAAASFNgVKcXGx3G639u3bpx07dqipqUmTJ09WfX29b8yiRYu0bds2bdq0ScXFxaqqqtLMmTN925ubm5WZmakLFy5o7969euutt7R+/XotX768/fYKAAB0at3aMnj79u1+t9evX6/o6GiVlpZqwoQJqqur05tvvqmCggJNmjRJkrRu3TqNGDFC+/bt0/jx4/XJJ5/o6NGj2rlzp2JiYnTHHXfo+eef15IlS/Tss88qPDy8/fYOAAB0Sjf0HpS6ujpJUlRUlCSptLRUTU1NSktL841JTEzUwIEDVVJSIkkqKSnRqFGjFBMT4xuTnp4ur9erI0eOXPF5Ghsb5fV6/RYAABC8rjtQWlpatHDhQt19990aOXKkJMnj8Sg8PFyRkZF+Y2NiYuTxeHxj/m+cXNp+aduV5OXlyeFw+Jb4+PjrnTYAAOgErjtQ3G63Dh8+rI0bN7bnfK4oNzdXdXV1vuXkyZM3/TkBAEDgtOk9KJdkZ2ersLBQe/bs0YABA3zrnU6nLly4oDNnzvhdRampqZHT6fSN+fzzz/0e79KnfC6N+TGbzSabzXY9Uw1qg5Z+cNVt367K7MCZAADQvtp0BcWyLGVnZ2vz5s3atWuXBg8e7Lc9OTlZ3bt3V1FRkW9deXm5Kisr5XK5JEkul0uHDh1SbW2tb8yOHTtkt9uVlJR0I/sCAACCRJuuoLjdbhUUFGjr1q2KiIjwvWfE4XCoZ8+ecjgcmjt3rnJychQVFSW73a7HH39cLpdL48ePlyRNnjxZSUlJeuihh7R69Wp5PB4tW7ZMbrebqyQAAEBSGwNlzZo1kqSJEyf6rV+3bp0eeeQRSdLLL7+s0NBQZWVlqbGxUenp6XrjjTd8Y8PCwlRYWKgFCxbI5XKpd+/emjNnjlauXHljewIAAIJGmwLFsqxWx/To0UP5+fnKz8+/6piEhAR9+OGHbXlqAADQhfC3eAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGCcNgfKnj17NG3aNMXFxSkkJERbtmzx2/7II48oJCTEb5kyZYrfmNOnT2v27Nmy2+2KjIzU3Llzde7cuRvaEQAAEDzaHCj19fUaM2aM8vPzrzpmypQpqq6u9i3vvPOO3/bZs2fryJEj2rFjhwoLC7Vnzx7Nnz+/7bMHAABBqVtb75CRkaGMjIxrjrHZbHI6nVfc9vXXX2v79u364osvdNddd0mSXn/9dU2dOlUvvvii4uLi2jolAAAQZG7Ke1B2796t6OhoDR8+XAsWLNCpU6d820pKShQZGemLE0lKS0tTaGio9u/ff8XHa2xslNfr9VsAAEDwavdAmTJlit5++20VFRXpL3/5i4qLi5WRkaHm5mZJksfjUXR0tN99unXrpqioKHk8nis+Zl5enhwOh2+Jj49v72kDAACDtPklntbMmjXL9/OoUaM0evRoDR06VLt371Zqaup1PWZubq5ycnJ8t71eL5ECAEAQu+kfMx4yZIj69eun48ePS5KcTqdqa2v9xly8eFGnT5++6vtWbDab7Ha73wIAAILXTQ+U7777TqdOnVJsbKwkyeVy6cyZMyotLfWN2bVrl1paWpSSknKzpwMAADqBNr/Ec+7cOd/VEEmqqKhQWVmZoqKiFBUVpeeee05ZWVlyOp06ceKEnnrqKQ0bNkzp6emSpBEjRmjKlCmaN2+e1q5dq6amJmVnZ2vWrFl8ggcAAEi6jisoBw4c0J133qk777xTkpSTk6M777xTy5cvV1hYmA4ePKjf/OY3uu222zR37lwlJyfrn//8p2w2m+8xNmzYoMTERKWmpmrq1Km655579Ne//rX99goAAHRqbb6CMnHiRFmWddXtH3/8cauPERUVpYKCgrY+NQAA6CL4WzwAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDjdAj0BdLxBSz+46rZvV2V24EwAALgyrqAAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIzT5kDZs2ePpk2bpri4OIWEhGjLli1+2y3L0vLlyxUbG6uePXsqLS1Nx44d8xtz+vRpzZ49W3a7XZGRkZo7d67OnTt3QzsCAACCR5sDpb6+XmPGjFF+fv4Vt69evVqvvfaa1q5dq/3796t3795KT09XQ0ODb8zs2bN15MgR7dixQ4WFhdqzZ4/mz59//XsBAACCSre23iEjI0MZGRlX3GZZll555RUtW7ZM06dPlyS9/fbbiomJ0ZYtWzRr1ix9/fXX2r59u7744gvdddddkqTXX39dU6dO1Ysvvqi4uLgb2B0AABAM2vU9KBUVFfJ4PEpLS/OtczgcSklJUUlJiSSppKREkZGRvjiRpLS0NIWGhmr//v1XfNzGxkZ5vV6/BQAABK92DRSPxyNJiomJ8VsfExPj2+bxeBQdHe23vVu3boqKivKN+bG8vDw5HA7fEh8f357TBgAAhukUn+LJzc1VXV2dbzl58mSgpwQAAG6idg0Up9MpSaqpqfFbX1NT49vmdDpVW1vrt/3ixYs6ffq0b8yP2Ww22e12vwUAAASvdg2UwYMHy+l0qqioyLfO6/Vq//79crlckiSXy6UzZ86otLTUN2bXrl1qaWlRSkpKe04HAAB0Um3+FM+5c+d0/Phx3+2KigqVlZUpKipKAwcO1MKFC/WnP/1Jt956qwYPHqxnnnlGcXFxmjFjhiRpxIgRmjJliubNm6e1a9eqqalJ2dnZmjVrFp/gAQAAkq4jUA4cOKBf/vKXvts5OTmSpDlz5mj9+vV66qmnVF9fr/nz5+vMmTO65557tH37dvXo0cN3nw0bNig7O1upqakKDQ1VVlaWXnvttXbYHQAAEAzaHCgTJ06UZVlX3R4SEqKVK1dq5cqVVx0TFRWlgoKCtj41AADoIjrFp3gAAEDXQqAAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwTrdATwCdx6ClH1x127erMjtwJgCAYMcVFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGCcdg+UZ599ViEhIX5LYmKib3tDQ4Pcbrf69u2rPn36KCsrSzU1Ne09DQAA0IndlCsot99+u6qrq33LZ5995tu2aNEibdu2TZs2bVJxcbGqqqo0c+bMmzENAADQSd2Uv8XTrVs3OZ3Oy9bX1dXpzTffVEFBgSZNmiRJWrdunUaMGKF9+/Zp/PjxN2M6AACgk7kpV1COHTumuLg4DRkyRLNnz1ZlZaUkqbS0VE1NTUpLS/ONTUxM1MCBA1VSUnLVx2tsbJTX6/VbAABA8Gr3QElJSdH69eu1fft2rVmzRhUVFbr33nt19uxZeTwehYeHKzIy0u8+MTEx8ng8V33MvLw8ORwO3xIfH9/e0wYAAAZp95d4MjIyfD+PHj1aKSkpSkhI0HvvvaeePXte12Pm5uYqJyfHd9vr9RIpAAAEsZv+MePIyEjddtttOn78uJxOpy5cuKAzZ874jampqbnie1YusdlsstvtfgsAAAheNz1Qzp07pxMnTig2NlbJycnq3r27ioqKfNvLy8tVWVkpl8t1s6cCAAA6iXZ/iefJJ5/UtGnTlJCQoKqqKq1YsUJhYWF64IEH5HA4NHfuXOXk5CgqKkp2u12PP/64XC4Xn+ABAAA+7R4o3333nR544AGdOnVK/fv31z333KN9+/apf//+kqSXX35ZoaGhysrKUmNjo9LT0/XGG2+09zQAAEAn1u6BsnHjxmtu79Gjh/Lz85Wfn9/eT40gM2jpB1fd9u2qzA6cCQCgo/G3eAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgnHb/mDEAoHPhI/0wEVdQAACAcbiCAgQQ/3IFgk9n+u/a5LkSKAg61/sf3LXu19p9AQDti0ABAOAKTL660BXwHhQAAGAcrqAAuGmC4V+gN+Mlw86y70AgEShAF9KVf2l2hX3v6H3sCse0MwjW/x14iQcAABiHQAEAAMbhJR4AnUqwXs4GOLf9ESgAgE6BX+BdC4ECtAP+jxMA2hfvQQEAAMbhCgoAIKhxhbNz4goKAAAwDldQAMAw/IsfIFAA/AT8wgTQ0QgU3HT8cmt/HFMAwY73oAAAAOMQKAAAwDi8xAMA6FC8RImfgisoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADBOQAMlPz9fgwYNUo8ePZSSkqLPP/88kNMBAACGCFigvPvuu8rJydGKFSv05ZdfasyYMUpPT1dtbW2gpgQAAAwRsEB56aWXNG/ePD366KNKSkrS2rVr1atXL/39738P1JQAAIAhugXiSS9cuKDS0lLl5ub61oWGhiotLU0lJSWXjW9sbFRjY6Pvdl1dnSTJ6/XelPm1NJ6/6rZrPSf3C977BeI5u/L9rqWz7MON7HtnmSv369z3u9H7Xo9Lj2lZVuuDrQD4z3/+Y0my9u7d67d+8eLF1rhx4y4bv2LFCksSCwsLCwsLSxAsJ0+ebLUVAnIFpa1yc3OVk5Pju93S0qLTp0+rb9++CgkJuWy81+tVfHy8Tp48Kbvd3pFT7TQ4Rq3jGF0bx6d1HKPWcYyuLdiOj2VZOnv2rOLi4lodG5BA6devn8LCwlRTU+O3vqamRk6n87LxNptNNpvNb11kZGSrz2O324Pif9CbiWPUOo7RtXF8Wscxah3H6NqC6fg4HI6fNC4gb5INDw9XcnKyioqKfOtaWlpUVFQkl8sViCkBAACDBOwlnpycHM2ZM0d33XWXxo0bp1deeUX19fV69NFHAzUlAABgiIAFyv3336/vv/9ey5cvl8fj0R133KHt27crJibmhh/bZrNpxYoVl70shP+PY9Q6jtG1cXxaxzFqHcfo2rry8QmxrJ/yWR8AAICOw9/iAQAAxiFQAACAcQgUAABgHAIFAAAYJygDJT8/X4MGDVKPHj2UkpKizz//PNBTMsazzz6rkJAQvyUxMTHQ0wqYPXv2aNq0aYqLi1NISIi2bNnit92yLC1fvlyxsbHq2bOn0tLSdOzYscBMNkBaO0aPPPLIZefUlClTAjPZAMjLy9PYsWMVERGh6OhozZgxQ+Xl5X5jGhoa5Ha71bdvX/Xp00dZWVmXfVFlMPspx2jixImXnUePPfZYgGbc8dasWaPRo0f7vpDN5XLpo48+8m3viudQ0AXKu+++q5ycHK1YsUJffvmlxowZo/T0dNXW1gZ6asa4/fbbVV1d7Vs+++yzQE8pYOrr6zVmzBjl5+dfcfvq1av12muvae3atdq/f7969+6t9PR0NTQ0dPBMA6e1YyRJU6ZM8Tun3nnnnQ6cYWAVFxfL7XZr37592rFjh5qamjR58mTV19f7xixatEjbtm3Tpk2bVFxcrKqqKs2cOTOAs+5YP+UYSdK8efP8zqPVq1cHaMYdb8CAAVq1apVKS0t14MABTZo0SdOnT9eRI0ckddFzqF3++p9Bxo0bZ7ndbt/t5uZmKy4uzsrLywvgrMyxYsUKa8yYMYGehpEkWZs3b/bdbmlpsZxOp/XCCy/41p05c8ay2WzWO++8E4AZBt6Pj5FlWdacOXOs6dOnB2Q+JqqtrbUkWcXFxZZl/e+c6d69u7Vp0ybfmK+//tqSZJWUlARqmgH142NkWZb1i1/8wvrjH/8YuEkZ6JZbbrH+9re/ddlzKKiuoFy4cEGlpaVKS0vzrQsNDVVaWppKSkoCODOzHDt2THFxcRoyZIhmz56tysrKQE/JSBUVFfJ4PH7nk8PhUEpKCufTj+zevVvR0dEaPny4FixYoFOnTgV6SgFTV1cnSYqKipIklZaWqqmpye88SkxM1MCBA7vsefTjY3TJhg0b1K9fP40cOVK5ubk6f/58IKYXcM3Nzdq4caPq6+vlcrm67DnUKf6a8U/13//+V83NzZd9G21MTIy++eabAM3KLCkpKVq/fr2GDx+u6upqPffcc7r33nt1+PBhRUREBHp6RvF4PJJ0xfPp0jb87+WdmTNnavDgwTpx4oSefvppZWRkqKSkRGFhYYGeXodqaWnRwoULdffdd2vkyJGS/ncehYeHX/YHTrvqeXSlYyRJDz74oBISEhQXF6eDBw9qyZIlKi8v1/vvvx/A2XasQ4cOyeVyqaGhQX369NHmzZuVlJSksrKyLnkOBVWgoHUZGRm+n0ePHq2UlBQlJCTovffe09y5cwM4M3RWs2bN8v08atQojR49WkOHDtXu3buVmpoawJl1PLfbrcOHD3fp93W15mrHaP78+b6fR40apdjYWKWmpurEiRMaOnRoR08zIIYPH66ysjLV1dXpH//4h+bMmaPi4uJATytgguolnn79+iksLOyydzbX1NTI6XQGaFZmi4yM1G233abjx48HeirGuXTOcD61zZAhQ9SvX78ud05lZ2ersLBQn376qQYMGOBb73Q6deHCBZ05c8ZvfFc8j652jK4kJSVFkrrUeRQeHq5hw4YpOTlZeXl5GjNmjF599dUuew4FVaCEh4crOTlZRUVFvnUtLS0qKiqSy+UK4MzMde7cOZ04cUKxsbGBnopxBg8eLKfT6Xc+eb1e7d+/n/PpGr777judOnWqy5xTlmUpOztbmzdv1q5duzR48GC/7cnJyerevbvfeVReXq7Kysoucx61doyupKysTJK6zHl0JS0tLWpsbOy651Cg36Xb3jZu3GjZbDZr/fr11tGjR6358+dbkZGRlsfjCfTUjPDEE09Yu3fvtioqKqx//etfVlpamtWvXz+rtrY20FMLiLNnz1pfffWV9dVXX1mSrJdeesn66quvrH//+9+WZVnWqlWrrMjISGvr1q3WwYMHrenTp1uDBw+2fvjhhwDPvONc6xidPXvWevLJJ62SkhKroqLC2rlzp/Xzn//cuvXWW62GhoZAT71DLFiwwHI4HNbu3but6upq33L+/HnfmMcee8waOHCgtWvXLuvAgQOWy+WyXC5XAGfdsVo7RsePH7dWrlxpHThwwKqoqLC2bt1qDRkyxJowYUKAZ95xli5dahUXF1sVFRXWwYMHraVLl1ohISHWJ598YllW1zyHgi5QLMuyXn/9dWvgwIFWeHi4NW7cOGvfvn2BnpIx7r//fis2NtYKDw+3fvazn1n333+/dfz48UBPK2A+/fRTS9Jly5w5cyzL+t9HjZ955hkrJibGstlsVmpqqlVeXh7YSXewax2j8+fPW5MnT7b69+9vde/e3UpISLDmzZvXpf5BcKVjI8lat26db8wPP/xg/eEPf7BuueUWq1evXtZvf/tbq7q6OnCT7mCtHaPKykprwoQJVlRUlGWz2axhw4ZZixcvturq6gI78Q70+9//3kpISLDCw8Ot/v37W6mpqb44sayueQ6FWJZlddz1GgAAgNYF1XtQAABAcCBQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGOf/Ab6LlksYuhZ8AAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
@@ -243,46 +234,46 @@
}
],
"source": [
- "plt.hist(mkbatch(2048)[1].cpu(), bins=64)"
+ "plt.hist(mkbatch(2048)[1].to(torch.float32).cpu(), bins=64)"
]
},
{
"cell_type": "code",
- "execution_count": 42,
- "execution_state": "idle",
+ "execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
- "(array([1162., 0., 0., 0., 0., 0., 0., 0., 0.,\n",
- " 0., 525., 0., 0., 0., 0., 0., 0., 0.,\n",
- " 0., 0., 0., 242., 0., 0., 0., 0., 0.,\n",
- " 0., 0., 0., 0., 0., 87., 0., 0., 0.,\n",
- " 0., 0., 0., 0., 0., 0., 22., 0., 0.,\n",
- " 0., 0., 0., 0., 0., 0., 0., 0., 7.,\n",
+ "(array([1157., 0., 0., 0., 0., 0., 0., 0., 0.,\n",
+ " 0., 0., 0., 570., 0., 0., 0., 0., 0.,\n",
+ " 0., 0., 0., 0., 0., 0., 0., 210., 0.,\n",
" 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n",
- " 3.]),\n",
- " array([1. , 1.09375, 1.1875 , 1.28125, 1.375 , 1.46875, 1.5625 ,\n",
- " 1.65625, 1.75 , 1.84375, 1.9375 , 2.03125, 2.125 , 2.21875,\n",
- " 2.3125 , 2.40625, 2.5 , 2.59375, 2.6875 , 2.78125, 2.875 ,\n",
- " 2.96875, 3.0625 , 3.15625, 3.25 , 3.34375, 3.4375 , 3.53125,\n",
- " 3.625 , 3.71875, 3.8125 , 3.90625, 4. , 4.09375, 4.1875 ,\n",
- " 4.28125, 4.375 , 4.46875, 4.5625 , 4.65625, 4.75 , 4.84375,\n",
- " 4.9375 , 5.03125, 5.125 , 5.21875, 5.3125 , 5.40625, 5.5 ,\n",
- " 5.59375, 5.6875 , 5.78125, 5.875 , 5.96875, 6.0625 , 6.15625,\n",
- " 6.25 , 6.34375, 6.4375 , 6.53125, 6.625 , 6.71875, 6.8125 ,\n",
- " 6.90625, 7. ]),\n",
+ " 0., 0., 86., 0., 0., 0., 0., 0., 0.,\n",
+ " 0., 0., 0., 0., 0., 0., 20., 0., 0.,\n",
+ " 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n",
+ " 5.]),\n",
+ " array([1. , 1.078125, 1.15625 , 1.234375, 1.3125 , 1.390625,\n",
+ " 1.46875 , 1.546875, 1.625 , 1.703125, 1.78125 , 1.859375,\n",
+ " 1.9375 , 2.015625, 2.09375 , 2.171875, 2.25 , 2.328125,\n",
+ " 2.40625 , 2.484375, 2.5625 , 2.640625, 2.71875 , 2.796875,\n",
+ " 2.875 , 2.953125, 3.03125 , 3.109375, 3.1875 , 3.265625,\n",
+ " 3.34375 , 3.421875, 3.5 , 3.578125, 3.65625 , 3.734375,\n",
+ " 3.8125 , 3.890625, 3.96875 , 4.046875, 4.125 , 4.203125,\n",
+ " 4.28125 , 4.359375, 4.4375 , 4.515625, 4.59375 , 4.671875,\n",
+ " 4.75 , 4.828125, 4.90625 , 4.984375, 5.0625 , 5.140625,\n",
+ " 5.21875 , 5.296875, 5.375 , 5.453125, 5.53125 , 5.609375,\n",
+ " 5.6875 , 5.765625, 5.84375 , 5.921875, 6. ]),\n",
" <BarContainer object of 64 artists>)"
]
},
- "execution_count": 42,
+ "execution_count": 5,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGdCAYAAAAMm0nCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAjF0lEQVR4nO3dfVSUdf7/8RdI3GQMiMXgbIps26rkXUnRZPdyRGXd9cRWFLVUrO5pwTK6gy3vysRsu5GWMDuteE56rPasllYkYcqWiIjLpmRkmyVlA3sOMRN0RJT5/vFbr19TWtgOznzo+TjnOqe5rs/MvOc6nsOzi5khxOv1egUAAGCQ0EAPAAAAcLIIGAAAYBwCBgAAGIeAAQAAxiFgAACAcQgYAABgHAIGAAAYh4ABAADGCQv0AH2lp6dHBw8eVHR0tEJCQgI9DgAA6AWv16uvvvpKDodDoaEnvs7SbwPm4MGDGjp0aKDHAAAAP0Jzc7POPvvsEx7vtwETHR0t/fcE2Gy2QI8DAAB6wePxaOjQodbP8RM56YCprq7WY489pvr6en3xxRdat26dZsyYIUnq7u7Wgw8+qNdff10ff/yxYmJilJaWpiVLlsjhcFiP0dbWptmzZ2vDhg0KDQ1VZmamli1bpjPOOMNa89577ykvL091dXU666yzNHv2bN133329nvPYr41sNhsBAwCAYX7o7R8n/Sbezs5OjRs3TqWlpd859vXXX2vXrl2aO3eudu3apb///e9qamrSr3/9a5912dnZamxsVGVlpTZu3Kjq6mrNmjXLOu7xeDR58mQlJiaqvr5ejz32mBYsWKAVK1ac7LgAAKAfCvlf/hp1SEiIzxWY46mrq9NFF12kTz/9VMOGDdPevXuVnJysuro6paSkSJIqKio0bdo0ffbZZ3I4HCorK9MDDzwgl8ul8PBwSVJhYaHWr1+vDz74oFezeTwexcTEyO12cwUGAABD9Pbnd59/jNrtdiskJESxsbGSpJqaGsXGxlrxIklpaWkKDQ1VbW2ttebyyy+34kWS0tPT1dTUpC+//PK4z9PV1SWPx+OzAQCA/qlPA+bQoUO6//77dcMNN1gV5XK5FB8f77MuLCxMcXFxcrlc1hq73e6z5tjtY2u+rbi4WDExMdbGJ5AAAOi/+ixguru7dd1118nr9aqsrKyvnsZSVFQkt9ttbc3NzX3+nAAAIDD65GPUx+Ll008/1ebNm31+h5WQkKDW1laf9UeOHFFbW5sSEhKsNS0tLT5rjt0+tubbIiIiFBER0QevBgAABBu/X4E5Fi/79u3TW2+9pcGDB/scdzqdam9vV319vbVv8+bN6unpUWpqqrWmurpa3d3d1prKykqNGDFCgwYN8vfIAADAMCcdMB0dHWpoaFBDQ4Mkaf/+/WpoaNCBAwfU3d2t3/72t9q5c6dWr16to0ePyuVyyeVy6fDhw5KkUaNGacqUKZo5c6Z27Nihd999V/n5+crKyrK+K+bGG29UeHi4cnNz1djYqBdffFHLli1TQUGBv18/AAAw0El/jHrLli266qqrvrM/JydHCxYsUFJS0nHv9/bbb+vKK6+U/vtFdvn5+T5fZFdSUnLCL7I788wzNXv2bN1///29npOPUQMAYJ7e/vz+n74HJpgRMAAAmCdovgcGAADA3wgYAABgHAIGAAAYh4ABAADG6ZMvsuvvhhe+dsJjnyzJOKWzAADwU8QVGAAAYBwCBgAAGIeAAQAAxiFgAACAcQgYAABgHAIGAAAYh4ABAADGIWAAAIBxCBgAAGAcAgYAABiHgAEAAMYhYAAAgHEIGAAAYBwCBgAAGIeAAQAAxiFgAACAcQgYAABgHAIGAAAYh4ABAADGIWAAAIBxCBgAAGAcAgYAABiHgAEAAMYhYAAAgHEIGAAAYBwCBgAAGIeAAQAAxiFgAACAcQgYAABgHAIGAAAYh4ABAADGIWAAAIBxCBgAAGAcAgYAABiHgAEAAMYhYAAAgHEIGAAAYBwCBgAAGIeAAQAAxiFgAACAcQgYAABgHAIGAAAYh4ABAADGIWAAAIBxTjpgqqurNX36dDkcDoWEhGj9+vU+x71er+bNm6chQ4YoKipKaWlp2rdvn8+atrY2ZWdny2azKTY2Vrm5uero6PBZ89577+myyy5TZGSkhg4dqqVLl/7Y1wgAAPqZkw6Yzs5OjRs3TqWlpcc9vnTpUpWUlGj58uWqra3VwIEDlZ6erkOHDllrsrOz1djYqMrKSm3cuFHV1dWaNWuWddzj8Wjy5MlKTExUfX29HnvsMS1YsEArVqz4sa8TAAD0IyFer9f7o+8cEqJ169ZpxowZ0n+vvjgcDt1999265557JElut1t2u13l5eXKysrS3r17lZycrLq6OqWkpEiSKioqNG3aNH322WdyOBwqKyvTAw88IJfLpfDwcElSYWGh1q9frw8++KBXs3k8HsXExMjtdstms/3Yl3hcwwtfO+GxT5Zk+PW5AAD4Kentz2+/vgdm//79crlcSktLs/bFxMQoNTVVNTU1kqSamhrFxsZa8SJJaWlpCg0NVW1trbXm8ssvt+JFktLT09XU1KQvv/zyuM/d1dUlj8fjswEAgP7JrwHjcrkkSXa73We/3W63jrlcLsXHx/scDwsLU1xcnM+a4z3GN5/j24qLixUTE2NtQ4cO9eMrAwAAwaTffAqpqKhIbrfb2pqbmwM9EgAA6CN+DZiEhARJUktLi8/+lpYW61hCQoJaW1t9jh85ckRtbW0+a473GN98jm+LiIiQzWbz2QAAQP/k14BJSkpSQkKCqqqqrH0ej0e1tbVyOp2SJKfTqfb2dtXX11trNm/erJ6eHqWmplprqqur1d3dba2prKzUiBEjNGjQIH+ODAAADHTSAdPR0aGGhgY1NDRI/33jbkNDgw4cOKCQkBDNmTNHixYt0quvvqrdu3frd7/7nRwOh/VJpVGjRmnKlCmaOXOmduzYoXfffVf5+fnKysqSw+GQJN14440KDw9Xbm6uGhsb9eKLL2rZsmUqKCjw9+sHAAAGCjvZO+zcuVNXXXWVdftYVOTk5Ki8vFz33XefOjs7NWvWLLW3t+vSSy9VRUWFIiMjrfusXr1a+fn5mjRpkkJDQ5WZmamSkhLreExMjDZt2qS8vDxNmDBBZ555pubNm+fzXTEAAOCn63/6HphgxvfAAABgnoB8DwwAAMCpQMAAAADjEDAAAMA4BAwAADAOAQMAAIxDwAAAAOMQMAAAwDgEDAAAMA4BAwAAjEPAAAAA4xAwAADAOAQMAAAwDgEDAACMQ8AAAADjEDAAAMA4BAwAADAOAQMAAIxDwAAAAOMQMAAAwDgEDAAAMA4BAwAAjEPAAAAA4xAwAADAOAQMAAAwDgEDAACMQ8AAAADjEDAAAMA4BAwAADAOAQMAAIxDwAAAAOMQMAAAwDgEDAAAMA4BAwAAjEPAAAAA4xAwAADAOAQMAAAwDgEDAACMQ8AAAADjEDAAAMA4BAwAADAOAQMAAIxDwAAAAOMQMAAAwDgEDAAAMA4BAwAAjEPAAAAA4xAwAADAOAQMAAAwDgEDAACMQ8AAAADj+D1gjh49qrlz5yopKUlRUVE655xz9PDDD8vr9VprvF6v5s2bpyFDhigqKkppaWnat2+fz+O0tbUpOztbNptNsbGxys3NVUdHh7/HBQAABvJ7wDz66KMqKyvTX/7yF+3du1ePPvqoli5dqqefftpas3TpUpWUlGj58uWqra3VwIEDlZ6erkOHDllrsrOz1djYqMrKSm3cuFHV1dWaNWuWv8cFAAAGCvF+89KIH/zqV7+S3W7X888/b+3LzMxUVFSUXnjhBXm9XjkcDt1999265557JElut1t2u13l5eXKysrS3r17lZycrLq6OqWkpEiSKioqNG3aNH322WdyOBw/OIfH41FMTIzcbrdsNps/X6KGF752wmOfLMnw63MBAPBT0tuf336/AnPJJZeoqqpKH374oSTpX//6l9555x1NnTpVkrR//365XC6lpaVZ94mJiVFqaqpqamokSTU1NYqNjbXiRZLS0tIUGhqq2tra4z5vV1eXPB6PzwYAAPqnMH8/YGFhoTwej0aOHKkBAwbo6NGjeuSRR5SdnS1JcrlckiS73e5zP7vdbh1zuVyKj4/3HTQsTHFxcdaabysuLtbChQv9/XIAAEAQ8vsVmJdeekmrV6/WmjVrtGvXLq1atUp//vOftWrVKn8/lY+ioiK53W5ra25u7tPnAwAAgeP3KzD33nuvCgsLlZWVJUkaM2aMPv30UxUXFysnJ0cJCQmSpJaWFg0ZMsS6X0tLi8aPHy9JSkhIUGtrq8/jHjlyRG1tbdb9vy0iIkIRERH+fjkAACAI+f0KzNdff63QUN+HHTBggHp6eiRJSUlJSkhIUFVVlXXc4/GotrZWTqdTkuR0OtXe3q76+nprzebNm9XT06PU1FR/jwwAAAzj9ysw06dP1yOPPKJhw4bpvPPO0z//+U898cQTuu222yRJISEhmjNnjhYtWqRzzz1XSUlJmjt3rhwOh2bMmCFJGjVqlKZMmaKZM2dq+fLl6u7uVn5+vrKysnr1CSQAANC/+T1gnn76ac2dO1d//OMf1draKofDoT/84Q+aN2+etea+++5TZ2enZs2apfb2dl166aWqqKhQZGSktWb16tXKz8/XpEmTFBoaqszMTJWUlPh7XAAAYCC/fw9MsOB7YAAAME/AvgcGAACgrxEwAADAOAQMAAAwDgEDAACMQ8AAAADjEDAAAMA4BAwAADAOAQMAAIxDwAAAAOMQMAAAwDgEDAAAMA4BAwAAjEPAAAAA4xAwAADAOAQMAAAwDgEDAACMQ8AAAADjEDAAAMA4BAwAADAOAQMAAIxDwAAAAOMQMAAAwDgEDAAAMA4BAwAAjEPAAAAA4xAwAADAOAQMAAAwDgEDAACMQ8AAAADjEDAAAMA4BAwAADAOAQMAAIxDwAAAAOMQMAAAwDgEDAAAMA4BAwAAjEPAAAAA4xAwAADAOAQMAAAwDgEDAACMQ8AAAADjEDAAAMA4BAwAADAOAQMAAIxDwAAAAOMQMAAAwDgEDAAAMA4BAwAAjEPAAAAA4/RJwHz++ee66aabNHjwYEVFRWnMmDHauXOnddzr9WrevHkaMmSIoqKilJaWpn379vk8Rltbm7Kzs2Wz2RQbG6vc3Fx1dHT0xbgAAMAwfg+YL7/8UhMnTtRpp52mN954Q++//74ef/xxDRo0yFqzdOlSlZSUaPny5aqtrdXAgQOVnp6uQ4cOWWuys7PV2NioyspKbdy4UdXV1Zo1a5a/xwUAAAYK8Xq9Xn8+YGFhod5991394x//OO5xr9crh8Ohu+++W/fcc48kye12y263q7y8XFlZWdq7d6+Sk5NVV1enlJQUSVJFRYWmTZumzz77TA6H4wfn8Hg8iomJkdvtls1m8+dL1PDC10547JMlGX59LgAAfkp6+/Pb71dgXn31VaWkpOjaa69VfHy8zj//fD333HPW8f3798vlciktLc3aFxMTo9TUVNXU1EiSampqFBsba8WLJKWlpSk0NFS1tbX+HhkAABjG7wHz8ccfq6ysTOeee67efPNN3X777brjjju0atUqSZLL5ZIk2e12n/vZ7XbrmMvlUnx8vM/xsLAwxcXFWWu+raurSx6Px2cDAAD9U5i/H7Cnp0cpKSlavHixJOn888/Xnj17tHz5cuXk5Pj76SzFxcVauHBhnz0+AAAIHn6/AjNkyBAlJyf77Bs1apQOHDggSUpISJAktbS0+KxpaWmxjiUkJKi1tdXn+JEjR9TW1mat+baioiK53W5ra25u9uvrAgAAwcPvATNx4kQ1NTX57Pvwww+VmJgoSUpKSlJCQoKqqqqs4x6PR7W1tXI6nZIkp9Op9vZ21dfXW2s2b96snp4epaamHvd5IyIiZLPZfDYAANA/+f1XSHfddZcuueQSLV68WNddd5127NihFStWaMWKFZKkkJAQzZkzR4sWLdK5556rpKQkzZ07Vw6HQzNmzJD+e8VmypQpmjlzppYvX67u7m7l5+crKyurV59AAgAA/ZvfA+bCCy/UunXrVFRUpIceekhJSUl66qmnlJ2dba2577771NnZqVmzZqm9vV2XXnqpKioqFBkZaa1ZvXq18vPzNWnSJIWGhiozM1MlJSX+HhcAABjI798DEyz4HhgAAMwTsO+BAQAA6GsEDAAAMA4BAwAAjEPAAAAA4xAwAADAOAQMAAAwDgEDAACMQ8AAAADjEDAAAMA4BAwAADAOAQMAAIxDwAAAAOMQMAAAwDgEDAAAMA4BAwAAjEPAAAAA44QFegD0L8MLXzvhsU+WZJzSWQAA/RdXYAAAgHEIGAAAYBwCBgAAGIeAAQAAxiFgAACAcQgYAABgHAIGAAAYh4ABAADGIWAAAIBxCBgAAGAcAgYAABiHgAEAAMYhYAAAgHEIGAAAYBwCBgAAGIeAAQAAxiFgAACAcQgYAABgHAIGAAAYh4ABAADGIWAAAIBxCBgAAGAcAgYAABiHgAEAAMYhYAAAgHEIGAAAYBwCBgAAGIeAAQAAxiFgAACAcQgYAABgHAIGAAAYh4ABAADGIWAAAIBx+jxglixZopCQEM2ZM8fad+jQIeXl5Wnw4ME644wzlJmZqZaWFp/7HThwQBkZGTr99NMVHx+ve++9V0eOHOnrcQEAgAH6NGDq6ur07LPPauzYsT7777rrLm3YsEEvv/yytm7dqoMHD+qaa66xjh89elQZGRk6fPiwtm3bplWrVqm8vFzz5s3ry3EBAIAh+ixgOjo6lJ2dreeee06DBg2y9rvdbj3//PN64okndPXVV2vChAlauXKltm3bpu3bt0uSNm3apPfff18vvPCCxo8fr6lTp+rhhx9WaWmpDh8+3FcjAwAAQ/RZwOTl5SkjI0NpaWk+++vr69Xd3e2zf+TIkRo2bJhqamokSTU1NRozZozsdru1Jj09XR6PR42Njcd9vq6uLnk8Hp8NAAD0T2F98aBr167Vrl27VFdX951jLpdL4eHhio2N9dlvt9vlcrmsNd+Ml2PHjx07nuLiYi1cuNCPrwIAAAQrv1+BaW5u1p133qnVq1crMjLS3w9/QkVFRXK73dbW3Nx8yp4bAACcWn4PmPr6erW2tuqCCy5QWFiYwsLCtHXrVpWUlCgsLEx2u12HDx9We3u7z/1aWlqUkJAgSUpISPjOp5KO3T625tsiIiJks9l8NgAA0D/5PWAmTZqk3bt3q6GhwdpSUlKUnZ1t/fdpp52mqqoq6z5NTU06cOCAnE6nJMnpdGr37t1qbW211lRWVspmsyk5OdnfIwMAAMP4/T0w0dHRGj16tM++gQMHavDgwdb+3NxcFRQUKC4uTjabTbNnz5bT6dTFF18sSZo8ebKSk5N18803a+nSpXK5XHrwwQeVl5eniIgIf48MAAAM0ydv4v0hTz75pEJDQ5WZmamuri6lp6frmWeesY4PGDBAGzdu1O233y6n06mBAwcqJydHDz30UCDGBQAAQeaUBMyWLVt8bkdGRqq0tFSlpaUnvE9iYqJef/31UzAdAAAwDX8LCQAAGIeAAQAAxiFgAACAcQgYAABgHAIGAAAYh4ABAADGIWAAAIBxCBgAAGAcAgYAABiHgAEAAMYhYAAAgHEIGAAAYBwCBgAAGIeAAQAAxiFgAACAcQgYAABgHAIGAAAYh4ABAADGIWAAAIBxCBgAAGAcAgYAABiHgAEAAMYhYAAAgHEIGAAAYBwCBgAAGIeAAQAAxiFgAACAcQgYAABgHAIGAAAYh4ABAADGIWAAAIBxCBgAAGAcAgYAABiHgAEAAMYhYAAAgHEIGAAAYBwCBgAAGIeAAQAAxiFgAACAcQgYAABgHAIGAAAYJyzQAwA/dcMLXzvhsU+WZJzSWQDAFFyBAQAAxiFgAACAcQgYAABgHAIGAAAYh4ABAADGIWAAAIBxCBgAAGAcAgYAABjH7wFTXFysCy+8UNHR0YqPj9eMGTPU1NTks+bQoUPKy8vT4MGDdcYZZygzM1MtLS0+aw4cOKCMjAydfvrpio+P17333qsjR474e1wAAGAgvwfM1q1blZeXp+3bt6uyslLd3d2aPHmyOjs7rTV33XWXNmzYoJdffllbt27VwYMHdc0111jHjx49qoyMDB0+fFjbtm3TqlWrVF5ernnz5vl7XAAAYCC//ymBiooKn9vl5eWKj49XfX29Lr/8crndbj3//PNas2aNrr76aknSypUrNWrUKG3fvl0XX3yxNm3apPfff19vvfWW7Ha7xo8fr4cfflj333+/FixYoPDwcH+PDQAADNLn74Fxu92SpLi4OElSfX29uru7lZaWZq0ZOXKkhg0bppqaGklSTU2NxowZI7vdbq1JT0+Xx+NRY2PjcZ+nq6tLHo/HZwMAAP1TnwZMT0+P5syZo4kTJ2r06NGSJJfLpfDwcMXGxvqstdvtcrlc1ppvxsux48eOHU9xcbFiYmKsbejQoX30qgAAQKD1acDk5eVpz549Wrt2bV8+jSSpqKhIbrfb2pqbm/v8OQEAQGD4/T0wx+Tn52vjxo2qrq7W2Wefbe1PSEjQ4cOH1d7e7nMVpqWlRQkJCdaaHTt2+DzesU8pHVvzbREREYqIiOijVwMAAIKJ36/AeL1e5efna926ddq8ebOSkpJ8jk+YMEGnnXaaqqqqrH1NTU06cOCAnE6nJMnpdGr37t1qbW211lRWVspmsyk5OdnfIwMAAMP4/QpMXl6e1qxZo1deeUXR0dHWe1ZiYmIUFRWlmJgY5ebmqqCgQHFxcbLZbJo9e7acTqcuvvhiSdLkyZOVnJysm2++WUuXLpXL5dKDDz6ovLw8rrIAAAD/B0xZWZkk6corr/TZv3LlSt1yyy2SpCeffFKhoaHKzMxUV1eX0tPT9cwzz1hrBwwYoI0bN+r222+X0+nUwIEDlZOTo4ceesjf4wIAAAP5PWC8Xu8PromMjFRpaalKS0tPuCYxMVGvv/66n6cDAAD9AX8LCQAAGIeAAQAAxiFgAACAcQgYAABgHAIGAAAYh4ABAADGIWAAAIBxCBgAAGAcAgYAABiHgAEAAMYhYAAAgHEIGAAAYBwCBgAAGIeAAQAAxiFgAACAcQgYAABgHAIGAAAYh4ABAADGIWAAAIBxCBgAAGAcAgYAABiHgAEAAMYhYAAAgHEIGAAAYBwCBgAAGIeAAQAAxiFgAACAccICPQAA/BjDC1874bFPlmSc0lkAnHpcgQEAAMYhYAAAgHEIGAAAYBwCBgAAGIeAAQAAxiFgAACAcQgYAABgHAIGAAAYh4ABAADGIWAAAIBxCBgAAGAcAgYAABiHgAEAAMYhYAAAgHEIGAAAYBwCBgAAGIeAAQAAxiFgAACAcQgYAABgnLBADwAA8J/hha+d8NgnSzJO6SxAX+IKDAAAME5QB0xpaamGDx+uyMhIpaamaseOHYEeCQAABIGgDZgXX3xRBQUFmj9/vnbt2qVx48YpPT1dra2tgR4NAAAEWNC+B+aJJ57QzJkzdeutt0qSli9frtdee01//etfVVhYGOjxAAD9CO8dMk9QBszhw4dVX1+voqIia19oaKjS0tJUU1Nz3Pt0dXWpq6vLuu12uyVJHo/H7/P1dH19wmN98Xwm4dycPM7Zj8N5Oz7Oy4/DeTu+0fPfPOGxPQvT++Q5j51vr9f7/Qu9Qejzzz/3SvJu27bNZ/+9997rveiii457n/nz53slsbGxsbGxsfWDrbm5+XtbISivwPwYRUVFKigosG739PSora1NgwcPVkhIiN+ex+PxaOjQoWpubpbNZvPb4/ZXnK/e41z1Hueq9zhXvce56r2+PFder1dfffWVHA7H964LyoA588wzNWDAALW0tPjsb2lpUUJCwnHvExERoYiICJ99sbGxfTajzWbjH/hJ4Hz1Hueq9zhXvce56j3OVe/11bmKiYn5wTVB+Smk8PBwTZgwQVVVVda+np4eVVVVyel0BnQ2AAAQeEF5BUaSCgoKlJOTo5SUFF100UV66qmn1NnZaX0qCQAA/HQFbcBcf/31+s9//qN58+bJ5XJp/PjxqqiokN1uD+hcERERmj9//nd+XYXj43z1Hueq9zhXvce56j3OVe8Fw7kK8f7g55QAAACCS1C+BwYAAOD7EDAAAMA4BAwAADAOAQMAAIxDwJyE6upqTZ8+XQ6HQyEhIVq/fn2gRwpKxcXFuvDCCxUdHa34+HjNmDFDTU1NgR4rKJWVlWns2LHWl0E5nU698cYbgR7LCEuWLFFISIjmzJkT6FGC0oIFCxQSEuKzjRw5MtBjBa3PP/9cN910kwYPHqyoqCiNGTNGO3fuDPRYQWf48OHf+XcVEhKivLy8Uz4LAXMSOjs7NW7cOJWWlgZ6lKC2detW5eXlafv27aqsrFR3d7cmT56szs7OQI8WdM4++2wtWbJE9fX12rlzp66++mr95je/UWNjY6BHC2p1dXV69tlnNXbs2ECPEtTOO+88ffHFF9b2zjvvBHqkoPTll19q4sSJOu200/TGG2/o/fff1+OPP65BgwYFerSgU1dX5/NvqrKyUpJ07bXXnvJZgvZ7YILR1KlTNXXq1ECPEfQqKip8bpeXlys+Pl719fW6/PLLAzZXMJo+fbrP7UceeURlZWXavn27zjvvvIDNFcw6OjqUnZ2t5557TosWLQr0OEEtLCzshH9+Bf/fo48+qqFDh2rlypXWvqSkpIDOFKzOOussn9tLlizROeecoyuuuOKUz8IVGPQ5t9stSYqLiwv0KEHt6NGjWrt2rTo7O/mTGd8jLy9PGRkZSktLC/QoQW/fvn1yOBz6+c9/ruzsbB04cCDQIwWlV199VSkpKbr22msVHx+v888/X88991ygxwp6hw8f1gsvvKDbbrvNr380ube4AoM+1dPTozlz5mjixIkaPXp0oMcJSrt375bT6dShQ4d0xhlnaN26dUpOTg70WEFp7dq12rVrl+rq6gI9StBLTU1VeXm5RowYoS+++EILFy7UZZddpj179ig6OjrQ4wWVjz/+WGVlZSooKNCf/vQn1dXV6Y477lB4eLhycnICPV7QWr9+vdrb23XLLbcE5PkJGPSpvLw87dmzh9+9f48RI0aooaFBbrdbf/vb35STk6OtW7cSMd/S3NysO++8U5WVlYqMjAz0OEHvm7/uHjt2rFJTU5WYmKiXXnpJubm5AZ0t2PT09CglJUWLFy+WJJ1//vnas2ePli9fTsB8j+eff15Tp06Vw+EIyPPzKyT0mfz8fG3cuFFvv/22zj777ECPE7TCw8P1i1/8QhMmTFBxcbHGjRunZcuWBXqsoFNfX6/W1lZdcMEFCgsLU1hYmLZu3aqSkhKFhYXp6NGjgR4xqMXGxuqXv/ylPvroo0CPEnSGDBnynf9hGDVqFL9y+x6ffvqp3nrrLf3+978P2AxcgYHfeb1ezZ49W+vWrdOWLVt4M9xJ6unpUVdXV6DHCDqTJk3S7t27ffbdeuutGjlypO6//34NGDAgYLOZoKOjQ//+97918803B3qUoDNx4sTvfNXDhx9+qMTExIDNFOxWrlyp+Ph4ZWRkBGwGAuYkdHR0+Pzfy/79+9XQ0KC4uDgNGzYsoLMFk7y8PK1Zs0avvPKKoqOj5XK5JEkxMTGKiooK9HhBpaioSFOnTtWwYcP01Vdfac2aNdqyZYvefPPNQI8WdKKjo7/zPqqBAwdq8ODBvL/qOO655x5Nnz5diYmJOnjwoObPn68BAwbohhtuCPRoQeeuu+7SJZdcosWLF+u6667Tjh07tGLFCq1YsSLQowWlnp4erVy5Ujk5OQoLC2BGeNFrb7/9tlfSd7acnJxAjxZUjneOJHlXrlwZ6NGCzm233eZNTEz0hoeHe8866yzvpEmTvJs2bQr0WMa44oorvHfeeWegxwhK119/vXfIkCHe8PBw789+9jPv9ddf7/3oo48CPVbQ2rBhg3f06NHeiIgI78iRI70rVqwI9EhB68033/RK8jY1NQV0jhDv//uBAwAAYAzexAsAAIxDwAAAAOMQMAAAwDgEDAAAMA4BAwAAjEPAAAAA4xAwAADAOAQMAAAwDgEDAACMQ8AAAADjEDAAAMA4BAwAADDO/wGGkh4mNSHckgAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGeCAYAAACKDztsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAilklEQVR4nO3df1BVdf7H8ReI/FDhIrbcy13R2N1WJU1NjG5aW8mISu46sZVFxqojOy1YZj+USu2HibrbL1rDdFp1Jh2rndHKiiIt3ZQQcSl/ZbZZ0o8LO4vcGzQiyvn+8R3PdEs3bS9cPrfnY+bMdM/53Hve9zYNzw73XiIsy7IEAABgkMhQDwAAAHCuCBgAAGAcAgYAABiHgAEAAMYhYAAAgHEIGAAAYBwCBgAAGIeAAQAAxiFgAACAcaJCPUBHaW9v15dffqn4+HhFRESEehwAAHAWLMvS119/LbfbrcjI/3KdxTpHW7duta655horJSXFkmRt2LDBPnb8+HHrnnvusQYPHmz16NHDSklJsaZMmWJ98cUXAY/xn//8x7rpppus+Ph4y+FwWNOmTbO+/vrrgDXvv/++NXr0aCsmJsbq27evtWTJknOas66uzpLExsbGxsbGZuBWV1f3X3/On/MVmJaWFg0dOlTTpk3TtddeG3Dsm2++0e7duzVv3jwNHTpUR48e1e23367f/va32rVrl70uLy9PX331lSoqKtTW1qapU6eqoKBA69atkyT5/X6NHTtWWVlZWr58ufbs2aNp06YpMTFRBQUFZzVnfHy8JKmurk4JCQnn+jQBAEAI+P1+paam2j/HzyTCsn78H3OMiIjQhg0bNGnSpDOuqa6u1iWXXKLPPvtM/fr104EDB5Senq7q6mplZGRIksrLyzVhwgR9/vnncrvdKisr03333Sev16vo6GhJ0ty5c7Vx40Z9+OGHZzWb3++Xw+GQz+cjYAAAMMTZ/vzu8Dfx+nw+RUREKDExUZJUWVmpxMREO14kKSsrS5GRkaqqqrLXXHHFFXa8SFJ2drYOHjyoo0ePnvY8ra2t8vv9ARsAAAhPHRowx44d05w5c3TjjTfaFeX1epWcnBywLioqSklJSfJ6vfYap9MZsObU7VNrvqukpEQOh8PeUlNTg/10AABAF9FhAdPW1qbrr79elmWprKyso05jKy4uls/ns7e6uroOPycAAAiNDvkY9al4+eyzz7Rly5aA32G5XC41NDQErD9x4oQaGxvlcrnsNfX19QFrTt0+tea7YmJiFBMTE8ynAQAAuqigX4E5FS+HDh3SW2+9pT59+gQc93g8ampqUk1Njb1vy5Ytam9vV2Zmpr1m27Ztamtrs9dUVFRowIAB6t27d7BHBgAAhjnngGlublZtba1qa2slSYcPH1Ztba2OHDmitrY2/f73v9euXbu0du1anTx5Ul6vV16vV8ePH5ckDRo0SOPGjdOMGTO0c+dObd++XUVFRZo8ebLcbrck6aabblJ0dLSmT5+uffv26fnnn9eTTz6p2bNnB++ZAwAAY53zx6jfeecdXXXVVd/bn5+frwceeEBpaWmnvd/bb7+tK6+8UpLU2NiooqIivfLKK4qMjFRubq5KS0vVq1cve/0HH3ygwsJCVVdX67zzztPMmTM1Z86cs56Tj1EDAGCes/35/T99D0xXRsAAAGCeLvM9MAAAAMFGwAAAAOMQMAAAwDgEDAAAMA4BAwAAjEPAAAAA43TInxIId+fPffWMxz5dnNOJkwAA8NPEFRgAAGAcAgYAABiHgAEAAMYhYAAAgHEIGAAAYBwCBgAAGIeAAQAAxiFgAACAcQgYAABgHAIGAAAYh4ABAADGIWAAAIBxCBgAAGAcAgYAABiHgAEAAMYhYAAAgHEIGAAAYBwCBgAAGIeAAQAAxiFgAACAcQgYAABgHAIGAAAYh4ABAADGIWAAAIBxCBgAAGAcAgYAABiHgAEAAMYhYAAAgHEIGAAAYBwCBgAAGIeAAQAAxiFgAACAcQgYAABgHAIGAAAYh4ABAADGIWAAAIBxCBgAAGAcAgYAABiHgAEAAMYhYAAAgHEIGAAAYBwCBgAAGIeAAQAAxjnngNm2bZsmTpwot9utiIgIbdy4MeC4ZVmaP3++UlJSFBcXp6ysLB06dChgTWNjo/Ly8pSQkKDExERNnz5dzc3NAWs++OADXX755YqNjVVqaqqWLl167s8OAACEpXMOmJaWFg0dOlTLli077fGlS5eqtLRUy5cvV1VVlXr27Kns7GwdO3bMXpOXl6d9+/apoqJCmzZt0rZt21RQUGAf9/v9Gjt2rPr376+amhr9+c9/1gMPPKAVK1b8iKcIAADCTYRlWdaPvnNEhDZs2KBJkyZJ+v+rL263W3feeafuuusuSZLP55PT6dTq1as1efJkHThwQOnp6aqurlZGRoYkqby8XBMmTNDnn38ut9utsrIy3XffffJ6vYqOjpYkzZ07Vxs3btSHH354VrP5/X45HA75fD4lJCT82Kd4WufPffWMxz5dnBPUcwEA8FNytj+/g/oemMOHD8vr9SorK8ve53A4lJmZqcrKSklSZWWlEhMT7XiRpKysLEVGRqqqqspec8UVV9jxIknZ2dk6ePCgjh49etpzt7a2yu/3B2wAACA8BTVgvF6vJMnpdAbsdzqd9jGv16vk5OSA41FRUUpKSgpYc7rH+PY5vqukpEQOh8PeUlNT//cnBAAAuqSw+RRScXGxfD6fvdXV1YV6JAAA0EGCGjAul0uSVF9fH7C/vr7ePuZyudTQ0BBw/MSJE2psbAxYc7rH+PY5vismJkYJCQkBGwAACE9BDZi0tDS5XC5t3rzZ3uf3+1VVVSWPxyNJ8ng8ampqUk1Njb1my5Ytam9vV2Zmpr1m27Ztamtrs9dUVFRowIAB6t27dzBHBgAABjrngGlublZtba1qa2sl/f8bd2tra3XkyBFFRERo1qxZWrhwoV5++WXt2bNHt9xyi9xut/1JpUGDBmncuHGaMWOGdu7cqe3bt6uoqEiTJ0+W2+2WJN10002Kjo7W9OnTtW/fPj3//PN68sknNXv27KA9cQAAYK6oc73Drl27dNVVV9m3T0VFfn6+Vq9erXvuuUctLS0qKChQU1OTRo8erfLycsXGxtr3Wbt2rYqKijRmzBhFRkYqNzdXpaWl9nGHw6E333xThYWFGjFihM477zzNnz8/4LtiAADAT9f/9D0wXRnfAwMAgHlC8j0wAAAAnYGAAQAAxiFgAACAcQgYAABgHAIGAAAYh4ABAADGIWAAAIBxCBgAAGAcAgYAABiHgAEAAMYhYAAAgHEIGAAAYBwCBgAAGIeAAQAAxiFgAACAcQgYAABgHAIGAAAYh4ABAADGIWAAAIBxCBgAAGAcAgYAABiHgAEAAMYhYAAAgHEIGAAAYBwCBgAAGIeAAQAAxiFgAACAcQgYAABgHAIGAAAYh4ABAADGIWAAAIBxCBgAAGAcAgYAABiHgAEAAMYhYAAAgHEIGAAAYBwCBgAAGIeAAQAAxiFgAACAcQgYAABgHAIGAAAYh4ABAADGIWAAAIBxCBgAAGAcAgYAABiHgAEAAMYhYAAAgHEIGAAAYBwCBgAAGIeAAQAAxgl6wJw8eVLz5s1TWlqa4uLi9Mtf/lIPP/ywLMuy11iWpfnz5yslJUVxcXHKysrSoUOHAh6nsbFReXl5SkhIUGJioqZPn67m5uZgjwsAAAwU9IBZsmSJysrK9Ne//lUHDhzQkiVLtHTpUj311FP2mqVLl6q0tFTLly9XVVWVevbsqezsbB07dsxek5eXp3379qmiokKbNm3Stm3bVFBQEOxxAQCAgSKsb18aCYJrrrlGTqdTzz77rL0vNzdXcXFxeu6552RZltxut+68807dddddkiSfzyen06nVq1dr8uTJOnDggNLT01VdXa2MjAxJUnl5uSZMmKDPP/9cbrf7B+fw+/1yOBzy+XxKSEgI5lPU+XNfPeOxTxfnBPVcAAD8lJztz++gX4G57LLLtHnzZn300UeSpPfff1/vvvuuxo8fL0k6fPiwvF6vsrKy7Ps4HA5lZmaqsrJSklRZWanExEQ7XiQpKytLkZGRqqqqOu15W1tb5ff7AzYAABCeooL9gHPnzpXf79fAgQPVrVs3nTx5Uo888ojy8vIkSV6vV5LkdDoD7ud0Ou1jXq9XycnJgYNGRSkpKcle810lJSV68MEHg/10AABAFxT0KzAvvPCC1q5dq3Xr1mn37t1as2aN/vKXv2jNmjXBPlWA4uJi+Xw+e6urq+vQ8wEAgNAJ+hWYu+++W3PnztXkyZMlSUOGDNFnn32mkpIS5efny+VySZLq6+uVkpJi36++vl7Dhg2TJLlcLjU0NAQ87okTJ9TY2Gjf/7tiYmIUExMT7KcDAAC6oKBfgfnmm28UGRn4sN26dVN7e7skKS0tTS6XS5s3b7aP+/1+VVVVyePxSJI8Ho+amppUU1Njr9myZYva29uVmZkZ7JEBAIBhgn4FZuLEiXrkkUfUr18/XXjhhfrnP/+pxx57TNOmTZMkRUREaNasWVq4cKEuuOACpaWlad68eXK73Zo0aZIkadCgQRo3bpxmzJih5cuXq62tTUVFRZo8efJZfQIJAACEt6AHzFNPPaV58+bpT3/6kxoaGuR2u/XHP/5R8+fPt9fcc889amlpUUFBgZqamjR69GiVl5crNjbWXrN27VoVFRVpzJgxioyMVG5urkpLS4M9LgAAMFDQvwemq+B7YAAAME/IvgcGAACgoxEwAADAOAQMAAAwDgEDAACMQ8AAAADjEDAAAMA4BAwAADAOAQMAAIxDwAAAAOMQMAAAwDgEDAAAMA4BAwAAjEPAAAAA4xAwAADAOAQMAAAwDgEDAACMQ8AAAADjEDAAAMA4BAwAADAOAQMAAIxDwAAAAOMQMAAAwDgEDAAAMA4BAwAAjEPAAAAA4xAwAADAOAQMAAAwDgEDAACMQ8AAAADjEDAAAMA4BAwAADAOAQMAAIxDwAAAAOMQMAAAwDgEDAAAMA4BAwAAjEPAAAAA4xAwAADAOAQMAAAwDgEDAACMQ8AAAADjEDAAAMA4BAwAADAOAQMAAIxDwAAAAOMQMAAAwDgEDAAAMA4BAwAAjEPAAAAA4xAwAADAOB0SMF988YVuvvlm9enTR3FxcRoyZIh27dplH7csS/Pnz1dKSori4uKUlZWlQ4cOBTxGY2Oj8vLylJCQoMTERE2fPl3Nzc0dMS4AADBM0APm6NGjGjVqlLp3767XX39d+/fv16OPPqrevXvba5YuXarS0lItX75cVVVV6tmzp7Kzs3Xs2DF7TV5envbt26eKigpt2rRJ27ZtU0FBQbDHBQAABoqwLMsK5gPOnTtX27dv1z/+8Y/THrcsS263W3feeafuuusuSZLP55PT6dTq1as1efJkHThwQOnp6aqurlZGRoYkqby8XBMmTNDnn38ut9v9g3P4/X45HA75fD4lJCQE7wlKOn/uq2c89uninKCeCwCAn5Kz/fkd9CswL7/8sjIyMnTdddcpOTlZw4cP18qVK+3jhw8fltfrVVZWlr3P4XAoMzNTlZWVkqTKykolJiba8SJJWVlZioyMVFVV1WnP29raKr/fH7ABAIDwFPSA+eSTT1RWVqYLLrhAb7zxhm699VbddtttWrNmjSTJ6/VKkpxOZ8D9nE6nfczr9So5OTngeFRUlJKSkuw131VSUiKHw2FvqampwX5qAACgiwh6wLS3t+viiy/WokWLNHz4cBUUFGjGjBlavnx5sE8VoLi4WD6fz97q6uo69HwAACB0gh4wKSkpSk9PD9g3aNAgHTlyRJLkcrkkSfX19QFr6uvr7WMul0sNDQ0Bx0+cOKHGxkZ7zXfFxMQoISEhYAMAAOEp6AEzatQoHTx4MGDfRx99pP79+0uS0tLS5HK5tHnzZvu43+9XVVWVPB6PJMnj8aipqUk1NTX2mi1btqi9vV2ZmZnBHhkAABgmKtgPeMcdd+iyyy7TokWLdP3112vnzp1asWKFVqxYIUmKiIjQrFmztHDhQl1wwQVKS0vTvHnz5Ha7NWnSJEn/f8Vm3Lhx9q+e2traVFRUpMmTJ5/VJ5AAAEB4C3rAjBw5Uhs2bFBxcbEeeughpaWl6YknnlBeXp695p577lFLS4sKCgrU1NSk0aNHq7y8XLGxsfaatWvXqqioSGPGjFFkZKRyc3NVWloa7HEBAICBgv49MF0F3wMDAIB5QvY9MAAAAB2NgAEAAMYJ+ntggB+DX8sBAM4FV2AAAIBxCBgAAGAcAgYAABiHgAEAAMYhYAAAgHEIGAAAYBwCBgAAGIeAAQAAxiFgAACAcQgYAABgHAIGAAAYh4ABAADGIWAAAIBxCBgAAGAcAgYAABiHgAEAAMYhYAAAgHEIGAAAYBwCBgAAGIeAAQAAxiFgAACAcQgYAABgHAIGAAAYh4ABAADGIWAAAIBxCBgAAGAcAgYAABiHgAEAAMYhYAAAgHEIGAAAYBwCBgAAGIeAAQAAxiFgAACAcQgYAABgHAIGAAAYh4ABAADGIWAAAIBxCBgAAGAcAgYAABiHgAEAAMYhYAAAgHEIGAAAYBwCBgAAGIeAAQAAxiFgAACAcQgYAABgnA4PmMWLFysiIkKzZs2y9x07dkyFhYXq06ePevXqpdzcXNXX1wfc78iRI8rJyVGPHj2UnJysu+++WydOnOjocQEAgAE6NGCqq6v1zDPP6KKLLgrYf8cdd+iVV17Riy++qK1bt+rLL7/Utddeax8/efKkcnJydPz4ce3YsUNr1qzR6tWrNX/+/I4cFwAAGKLDAqa5uVl5eXlauXKlevfube/3+Xx69tln9dhjj+nqq6/WiBEjtGrVKu3YsUPvvfeeJOnNN9/U/v379dxzz2nYsGEaP368Hn74YS1btkzHjx/vqJEBAIAhOixgCgsLlZOTo6ysrID9NTU1amtrC9g/cOBA9evXT5WVlZKkyspKDRkyRE6n016TnZ0tv9+vffv2ddTIAADAEFEd8aDr16/X7t27VV1d/b1jXq9X0dHRSkxMDNjvdDrl9XrtNd+Ol1PHTx07ndbWVrW2ttq3/X7///IUAABAFxb0KzB1dXW6/fbbtXbtWsXGxgb74c+opKREDofD3lJTUzvt3AAAoHMFPWBqamrU0NCgiy++WFFRUYqKitLWrVtVWlqqqKgoOZ1OHT9+XE1NTQH3q6+vl8vlkiS5XK7vfSrp1O1Ta76ruLhYPp/P3urq6oL91AAAQBcR9IAZM2aM9uzZo9raWnvLyMhQXl6e/c/du3fX5s2b7fscPHhQR44ckcfjkSR5PB7t2bNHDQ0N9pqKigolJCQoPT39tOeNiYlRQkJCwAYAAMJT0N8DEx8fr8GDBwfs69mzp/r06WPvnz59umbPnq2kpCQlJCRo5syZ8ng8uvTSSyVJY8eOVXp6uqZMmaKlS5fK6/Xq/vvvV2FhoWJiYoI9MgAAMEyHvIn3hzz++OOKjIxUbm6uWltblZ2draeffto+3q1bN23atEm33nqrPB6Pevbsqfz8fD300EOhGBcAAHQxnRIw77zzTsDt2NhYLVu2TMuWLTvjffr376/XXnutgycDAAAm4m8hAQAA4xAwAADAOAQMAAAwDgEDAACMQ8AAAADjEDAAAMA4BAwAADAOAQMAAIxDwAAAAOMQMAAAwDgEDAAAMA4BAwAAjEPAAAAA4xAwAADAOAQMAAAwDgEDAACMQ8AAAADjEDAAAMA4BAwAADAOAQMAAIxDwAAAAOMQMAAAwDgEDAAAMA4BAwAAjEPAAAAA4xAwAADAOAQMAAAwDgEDAACMQ8AAAADjEDAAAMA4BAwAADAOAQMAAIxDwAAAAOMQMAAAwDgEDAAAMA4BAwAAjEPAAAAA4xAwAADAOAQMAAAwDgEDAACMQ8AAAADjEDAAAMA4BAwAADAOAQMAAIxDwAAAAOMQMAAAwDgEDAAAMA4BAwAAjEPAAAAA4xAwAADAOEEPmJKSEo0cOVLx8fFKTk7WpEmTdPDgwYA1x44dU2Fhofr06aNevXopNzdX9fX1AWuOHDminJwc9ejRQ8nJybr77rt14sSJYI8LAAAMFBXsB9y6dasKCws1cuRInThxQvfee6/Gjh2r/fv3q2fPnpKkO+64Q6+++qpefPFFORwOFRUV6dprr9X27dslSSdPnlROTo5cLpd27Nihr776Srfccou6d++uRYsWBXtk4Cfn/LmvnvHYp4tzOnESAPhxgh4w5eXlAbdXr16t5ORk1dTU6IorrpDP59Ozzz6rdevW6eqrr5YkrVq1SoMGDdJ7772nSy+9VG+++ab279+vt956S06nU8OGDdPDDz+sOXPm6IEHHlB0dHSwxwYAAAbp8PfA+Hw+SVJSUpIkqaamRm1tbcrKyrLXDBw4UP369VNlZaUkqbKyUkOGDJHT6bTXZGdny+/3a9++fac9T2trq/x+f8AGAADCU4cGTHt7u2bNmqVRo0Zp8ODBkiSv16vo6GglJiYGrHU6nfJ6vfaab8fLqeOnjp1OSUmJHA6HvaWmpgb52QAAgK6iQwOmsLBQe/fu1fr16zvyNJKk4uJi+Xw+e6urq+vwcwIAgNAI+ntgTikqKtKmTZu0bds29e3b197vcrl0/PhxNTU1BVyFqa+vl8vlstfs3Lkz4PFOfUrp1JrviomJUUxMTJCfBQAA6IqCfgXGsiwVFRVpw4YN2rJli9LS0gKOjxgxQt27d9fmzZvtfQcPHtSRI0fk8XgkSR6PR3v27FFDQ4O9pqKiQgkJCUpPTw/2yAAAwDBBvwJTWFiodevW6aWXXlJ8fLz9nhWHw6G4uDg5HA5Nnz5ds2fPVlJSkhISEjRz5kx5PB5deumlkqSxY8cqPT1dU6ZM0dKlS+X1enX//fersLCQqywAACD4AVNWViZJuvLKKwP2r1q1Sn/4wx8kSY8//rgiIyOVm5ur1tZWZWdn6+mnn7bXduvWTZs2bdKtt94qj8ejnj17Kj8/Xw899FCwxwUAAAYKesBYlvWDa2JjY7Vs2TItW7bsjGv69++v1157LZijAQCAMMHfQgIAAMYhYAAAgHEIGAAAYBwCBgAAGIeAAQAAxiFgAACAcQgYAABgHAIGAAAYh4ABAADGIWAAAIBxCBgAAGAcAgYAABiHgAEAAMYhYAAAgHEIGAAAYBwCBgAAGIeAAQAAxiFgAACAcQgYAABgHAIGAAAYh4ABAADGIWAAAIBxCBgAAGAcAgYAABiHgAEAAMYhYAAAgHEIGAAAYBwCBgAAGCcq1AMAQDg7f+6rZzz26eKcTpwECC9cgQEAAMYhYAAAgHEIGAAAYBwCBgAAGIeAAQAAxiFgAACAcQgYAABgHAIGAAAYh4ABAADGIWAAAIBxCBgAAGAcAgYAABiHgAEAAMYhYAAAgHEIGAAAYBwCBgAAGIeAAQAAxiFgAACAcQgYAABgnKhQDwAAQLCcP/fVMx77dHFOJ06CjsYVGAAAYJwuHTDLli3T+eefr9jYWGVmZmrnzp2hHgkAAHQBXTZgnn/+ec2ePVsLFizQ7t27NXToUGVnZ6uhoSHUowEAgBDrsgHz2GOPacaMGZo6darS09O1fPly9ejRQ3/7299CPRoAAAixLvkm3uPHj6umpkbFxcX2vsjISGVlZamysvK092ltbVVra6t92+fzSZL8fn/Q52tv/eaMxzrifD8FvKadi9e78/Bady5e7+AavOCNMx7b+2B2h5zz1L8ny7L++0KrC/riiy8sSdaOHTsC9t99993WJZdcctr7LFiwwJLExsbGxsbGFgZbXV3df22FLnkF5scoLi7W7Nmz7dvt7e1qbGxUnz59FBEREbTz+P1+paamqq6uTgkJCUF7XHwfr3Xn4HXuHLzOnYPXuXN05OtsWZa+/vprud3u/7quSwbMeeedp27duqm+vj5gf319vVwu12nvExMTo5iYmIB9iYmJHTWiEhIS+I+jk/Badw5e587B69w5eJ07R0e9zg6H4wfXdMk38UZHR2vEiBHavHmzva+9vV2bN2+Wx+MJ4WQAAKAr6JJXYCRp9uzZys/PV0ZGhi655BI98cQTamlp0dSpU0M9GgAACLEuGzA33HCD/v3vf2v+/Pnyer0aNmyYysvL5XQ6QzpXTEyMFixY8L1fVyH4eK07B69z5+B17hy8zp2jK7zOEZb1Q59TAgAA6Fq65HtgAAAA/hsCBgAAGIeAAQAAxiFgAACAcQiYc7Bt2zZNnDhRbrdbERER2rhxY6hHCjslJSUaOXKk4uPjlZycrEmTJungwYOhHivslJWV6aKLLrK/hMrj8ej1118P9Vhhb/HixYqIiNCsWbNCPUrYeeCBBxQRERGwDRw4MNRjhaUvvvhCN998s/r06aO4uDgNGTJEu3bt6vQ5CJhz0NLSoqFDh2rZsmWhHiVsbd26VYWFhXrvvfdUUVGhtrY2jR07Vi0tLaEeLaz07dtXixcvVk1NjXbt2qWrr75av/vd77Rv375Qjxa2qqur9cwzz+iiiy4K9Shh68ILL9RXX31lb++++26oRwo7R48e1ahRo9S9e3e9/vrr2r9/vx599FH17t2702fpst8D0xWNHz9e48ePD/UYYa28vDzg9urVq5WcnKyamhpdccUVIZoq/EycODHg9iOPPKKysjK99957uvDCC0M0Vfhqbm5WXl6eVq5cqYULF4Z6nLAVFRV1xj83g+BYsmSJUlNTtWrVKntfWlpaSGbhCgy6NJ/PJ0lKSkoK8STh6+TJk1q/fr1aWlr4Ux0dpLCwUDk5OcrKygr1KGHt0KFDcrvd+sUvfqG8vDwdOXIk1COFnZdfflkZGRm67rrrlJycrOHDh2vlypUhmYUrMOiy2tvbNWvWLI0aNUqDBw8O9ThhZ8+ePfJ4PDp27Jh69eqlDRs2KD09PdRjhZ3169dr9+7dqq6uDvUoYS0zM1OrV6/WgAED9NVXX+nBBx/U5Zdfrr179yo+Pj7U44WNTz75RGVlZZo9e7buvfdeVVdX67bbblN0dLTy8/M7dRYCBl1WYWGh9u7dy++xO8iAAQNUW1srn8+nv//978rPz9fWrVuJmCCqq6vT7bffroqKCsXGxoZ6nLD27V/vX3TRRcrMzFT//v31wgsvaPr06SGcLLy0t7crIyNDixYtkiQNHz5ce/fu1fLlyzs9YPgVErqkoqIibdq0SW+//bb69u0b6nHCUnR0tH71q19pxIgRKikp0dChQ/Xkk0+GeqywUlNTo4aGBl188cWKiopSVFSUtm7dqtLSUkVFRenkyZOhHjFsJSYm6te//rU+/vjjUI8SVlJSUr73PzmDBg0Kya/ruAKDLsWyLM2cOVMbNmzQO++8E7I3h/0Utbe3q7W1NdRjhJUxY8Zoz549AfumTp2qgQMHas6cOerWrVuIJgt/zc3N+te//qUpU6aEepSwMmrUqO99tcVHH32k/v37d/osBMw5aG5uDqj5w4cPq7a2VklJSerXr18IJwsfhYWFWrdunV566SXFx8fL6/VKkhwOh+Li4kI8XfgoLi7W+PHj1a9fP3399ddat26d3nnnHb3xxhuhHi2sxMfHf+/9Wz179lSfPn14X1eQ3XXXXZo4caL69++vL7/8UgsWLFC3bt104403hnq0sHLHHXfosssu06JFi3T99ddr586dWrFihVasWNH5w1g4a2+//bYl6Xtbfn5+qEcLG6d7fSVZq1atCvVoYWXatGlW//79rejoaOtnP/uZNWbMGOvNN98M9Vg/Cb/5zW+s22+/PdRjhJ0bbrjBSklJsaKjo62f//zn1g033GB9/PHHoR4rLL3yyivW4MGDrZiYGGvgwIHWihUrQjJHhGVZVudnEwAAwI/Hm3gBAIBxCBgAAGAcAgYAABiHgAEAAMYhYAAAgHEIGAAAYBwCBgAAGIeAAQAAxiFgAACAcQgYAABgHAIGAAAYh4ABAADG+T+/FGJF6kiv7QAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
@@ -292,7 +283,7 @@
}
],
"source": [
- "plt.hist(mktunebatch(2048)[1].cpu(), bins=64)"
+ "plt.hist(mktunebatch(2048)[1].to(torch.float32).cpu(), bins=64)"
]
},
{
@@ -306,8 +297,7 @@
},
{
"cell_type": "code",
- "execution_count": 5,
- "execution_state": "idle",
+ "execution_count": 6,
"metadata": {
"id": "tLOWhg_CeWzH"
},
@@ -316,9 +306,9 @@
"class TransformerModel(nn.Module):\n",
" def __init__(self, input_dim, model_dim, output_dim, num_heads, num_layers, seq_len, device, dropout):\n",
" super().__init__()\n",
- " self.embedding = nn.Embedding(input_dim, model_dim//2)\n",
+ " self.embedding = nn.Embedding(input_dim, model_dim//2, dtype=torch.bfloat16)\n",
" # seq_len is odd\n",
- " self.fancy_encoding = torch.repeat_interleave(torch.rand((1, seq_len // 2 + 1, model_dim // 2), device=device), 2, dim=1)\n",
+ " self.fancy_encoding = torch.repeat_interleave(torch.rand((1, seq_len // 2 + 1, model_dim // 2), device=device, dtype=torch.bfloat16), 2, dim=1)\n",
" # cut off last element since the target vertex is not repeated\n",
" self.fancy_encoding = self.fancy_encoding[:, :seq_len, :]\n",
" \n",
@@ -328,10 +318,10 @@
"\n",
" encoder_layer = nn.TransformerEncoderLayer(d_model=model_dim, nhead=num_heads,\n",
" dim_feedforward=model_dim*4,\n",
- " dropout=dropout, batch_first=True)\n",
+ " dropout=dropout, batch_first=True, dtype=torch.bfloat16)\n",
" self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers)\n",
"\n",
- " self.fc_out = nn.Linear(model_dim*seq_len, output_dim)\n",
+ " self.fc_out = nn.Linear(model_dim*seq_len, output_dim, dtype=torch.bfloat16)\n",
"\n",
" def forward(self, src, key_padding_mask):\n",
" batch_size, src_len = src.size(0), src.size(1)\n",
@@ -356,8 +346,7 @@
},
{
"cell_type": "code",
- "execution_count": 11,
- "execution_state": "idle",
+ "execution_count": 7,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
@@ -370,8 +359,66 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "Training data: 131M\n",
- "Trainable parameters in the model: 605K\n"
+ "T",
+ "r",
+ "a",
+ "i",
+ "n",
+ "i",
+ "n",
+ "g",
+ " ",
+ "d",
+ "a",
+ "t",
+ "a",
+ ":",
+ " ",
+ "2",
+ "6",
+ "2",
+ "M",
+ "\n",
+ "T",
+ "r",
+ "a",
+ "i",
+ "n",
+ "a",
+ "b",
+ "l",
+ "e",
+ " ",
+ "p",
+ "a",
+ "r",
+ "a",
+ "m",
+ "e",
+ "t",
+ "e",
+ "r",
+ "s",
+ " ",
+ "i",
+ "n",
+ " ",
+ "t",
+ "h",
+ "e",
+ " ",
+ "m",
+ "o",
+ "d",
+ "e",
+ "l",
+ ":",
+ " ",
+ "6",
+ "0",
+ "5",
+ "K",
+ "\n"
]
}
],
@@ -379,9 +426,9 @@
"# PARAMS\n",
"VOCAB_SIZE = 1 + MAX_VTXS # one more than the max number of vertices\n",
"MODEL_DIM = 64 # Dimension of model (embedding and transformer)\n",
- "NEPOCHS = 1000\n",
- "BSZ = 2048 # Batch size\n",
- "BPE = 64 # Batches per epoch\n",
+ "NEPOCHS = 100\n",
+ "BSZ = 10244 # Batch size\n",
+ "BPE = 256 # Batches per epoch\n",
"LR = 0.003\n",
"WD = 0.002\n",
"NHEADS = 4\n",
@@ -391,6 +438,7 @@
" output_dim=1, num_heads=NHEADS,\n",
" num_layers=NLAYERS, seq_len=SEQ_LEN,\n",
" dropout=DROPOUT, device=device).to(device)\n",
+ "model = torch.compile(model)\n",
"\n",
"criterion = nn.MSELoss()\n",
"optimizer = torch.optim.Adam(model.parameters(), lr=LR, weight_decay=WD)\n",
@@ -411,8 +459,7 @@
},
{
"cell_type": "code",
- "execution_count": 46,
- "execution_state": "idle",
+ "execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
@@ -428,25 +475,24 @@
},
{
"cell_type": "code",
- "execution_count": 51,
- "execution_state": "idle",
+ "execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "3ba829714ada43c184a04b0a0b4d06f2",
+ "model_id": "4eb2d57cb7c948da8e9bd201f70d8d19",
"version_major": 2,
"version_minor": 0
},
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAApBUlEQVR4nO3de1SVdb7H8Q+ge2MpaCFXt5LOqI0XaDARzTFnYZQeGmfVkbSj5LHSdByTVZN2EZtKTLPFjDfKyWpOmZSnPK0kOkQ5HY3GCWVWTV7G8DYVKJmgmCDs3/nj1D6zAwwM9tb9e7/W2n/w43nY34dnbL/n2ReCjDFGAAAAsEawvwcAAACAbxGAAAAAliEAAQAALEMAAgAAWIYABAAAsAwBCAAAYBkCEAAAwDIEIAAAgGUIQAAAAMsQgABwkQgKCtKvfvUrf48BIAAQgAAkSc8995yCgoIUFBSkbdu2Nfm+MUYul0tBQUH6l3/5F6/vnTp1StnZ2Ro8eLAuvfRSXX755UpMTNS8efP0+eefe7ZbvHix5z6au1VUVPjkWFtyrtlmzZrl19kAoD118vcAAC4soaGh2rBhg6655hqv9T/96U/6xz/+IafT6bV+9uxZ/exnP9OePXuUmZmpuXPn6tSpU/rb3/6mDRs26Je//KViY2O99lm7dq26du3a5L67d+/eQUfVeuPGjdO0adOarPfv398v8wBARyAAAXgZP368XnnlFf3+979Xp07//5+IDRs2KCkpSVVVVV7bb968Wbt27dKLL76oKVOmeH3vzJkzqq+vb3IfN998syIiIjrwKM5f//799W//9m/+HgMAOhRPAQPwMnnyZH355ZcqKiryrNXX12vTpk1NAk+SPv30U0nSqFGjmnwvNDRUYWFh7TLX4MGDNXbs2CbrbrdbcXFxuvnmmz1rGzduVFJSkrp166awsDANGTJEv/vd79plDkm69tprNXjwYJWWlmrkyJHq0qWLrrjiCuXl5TXZ9ujRo5oxY4aioqIUGhqqhIQEPf/8880ex+9+9zsNGTJEoaGh6tmzp66//np9+OGHTbbdvHmzBg8eLKfTqUGDBqmwsNDr+ydPntTdd9+t+Ph4OZ1ORUZGaty4cdq5c2e7/Q4AXNwIQABe4uPjlZKSopdeesmz9uabb6q6ulq33HJLk+379OkjSfrjH/8oY0yr7uP48eOqqqryup04ceKc+2RkZOi9995r8jrBbdu26fPPP/fMVlRUpMmTJ6tHjx56/PHHtXTpUl177bXavn17q2Y7c+ZMk9mqqqqaXMn86quvNH78eCUlJWnZsmXq1auX7rrrLq1fv96zzddff61rr71W//Ef/6Fbb71Vy5cvV3h4uG677bYmQTpjxgzdfffdcrlcevzxx7VgwQKFhobqgw8+aHK8s2fP1i233KJly5bpzJkzuummm/Tll196tpk1a5bWrl2rm266SWvWrNE999yjLl26aPfu3a36HQCwgAEAY8yzzz5rJJm//OUvZtWqVaZbt27m9OnTxhhj/vVf/9WMHTvWGGNMnz59zIQJEzz7nT592gwYMMBIMn369DG33XabeeaZZ0xlZWWT+8jOzjaSmr0NGDDgnPPt3bvXSDIrV670Wp89e7bp2rWrZ9Z58+aZsLAw09DQ0ObfQUuzSTIvvfSSZ7sxY8YYSWbFihWetbq6OpOYmGgiIyNNfX29McaY3NxcI8m88MILnu3q6+tNSkqK6dq1q6mpqTHGGPPOO+8YSebXv/51k5ncbrfXfA6Hw+zfv9+z9te//rXJ7yU8PNzMmTOnzccPwB5cAQTQxKRJk/T111/rjTfe0MmTJ/XGG280+/SvJHXp0kV//vOfde+990rfvJt4xowZiomJ0dy5c1VXV9dkn//8z/9UUVGR1+3ZZ58950z9+/dXYmKi8vPzPWuNjY3atGmT0tPT1aVLF+mbN5LU1tZ6PYXdFr/4xS+azFZUVNTk6edOnTpp5syZnq8dDodmzpypo0ePqrS0VJJUUFCg6OhoTZ482bNd586d9etf/1qnTp3Sn/70J8/vIygoSNnZ2U3mCQoK8vo6NTVV/fr183w9dOhQhYWFqby83LPWvXt3/fnPf/Z6BzYA/DPeBAKgiZ49eyo1NVUbNmzQ6dOn1djY6PUau+8KDw/XsmXLtGzZMh06dEjFxcV64okntGrVKoWHh+vRRx/12v5nP/vZeb0JJCMjQ/fff78+++wzxcXFaevWrTp69KgyMjI828yePVsvv/yybrjhBsXFxem6667TpEmTdP3117fqPnr16qXU1NTv3S42NlaXXnqp19q37xQ+ePCgRowYoUOHDunHP/6xgoO9/7/2lVdeKUk6dOiQ9M3rKGNjY3XZZZd97/327t27yVqPHj301Vdfeb5etmyZMjMz5XK5lJSUpPHjx2vatGnq27fv9/58AHbgCiCAZk2ZMkVvvvmm8vLydMMNN7T6I1r69Omjf//3f9f27dvVvXt3vfjii+02U0ZGhowxeuWVVyRJL7/8ssLDw73iLjIyUmVlZXr99dd144036t1339UNN9ygzMzMdpvDn0JCQppd/+fXX06aNEnl5eVauXKlYmNjtXz5cg0aNEhvvvmmDycFcCEjAAE065e//KWCg4P1wQcftPj077n06NFD/fr10xdffNFuM11xxRUaPny48vPz1dDQoFdffVUTJ05s8tmEDodD6enpWrNmjT799FPNnDlTf/zjH7V///52m+Xzzz9XbW2t19q+ffukb95Io29i+O9//7vcbrfXdnv27PF8X5L69eunzz//XMePH2+3+WJiYjR79mxt3rxZBw4c0OWXX67HHnus3X4+gIsbAQigWV27dtXatWu1ePFipaent7jdX//61yafDahvnt785JNPNGDAgHadKyMjQx988IHWr1+vqqoqr6d/JXm9G1aSgoODNXToUElq9vWI56uhoUFPPfWU5+v6+no99dRT6tmzp5KSkqRvPlOxoqLC63WLDQ0NWrlypbp27aoxY8ZIkm666SYZY/Twww83uZ/WvrP6W42NjaqurvZai4yMVGxsbLseP4CLG68BBNCi1jxtWlRUpOzsbN14440aMWKEunbtqvLycq1fv151dXVavHhxk302bdrU7F8CGTdunKKios55f5MmTdI999yje+65R5dddlmT1+vdfvvtOn78uH7+85+rV69eOnTokFauXKnExETPa+/OZd++fXrhhRearEdFRWncuHGer2NjY/X444/r4MGD6t+/v/Lz81VWVqann35anTt3liTdeeedeuqpp3TbbbeptLRU8fHx2rRpk7Zv367c3Fx169ZNkjR27FhNnTpVv//97/X3v/9d119/vdxut/7nf/5HY8eObdPf/z158qR69eqlm2++WQkJCeratavefvtt/eUvf9GKFSta/XMABDh/vw0ZwIXhnz8G5ly++zEw5eXlZtGiRWbEiBEmMjLSdOrUyfTs2dNMmDDBvPPOO177nutjYCSZd999t1Wzjho1ykgyt99+e5Pvbdq0yVx33XUmMjLSOBwO07t3bzNz5kzzxRdffO/PPddsY8aM8Ww3ZswYM2jQIPPhhx+alJQUExoaavr06WNWrVrV5GdWVlaa6dOnm4iICONwOMyQIUPMs88+22S7hoYGs3z5cjNw4EDjcDhMz549zQ033GBKS0u95mvu41369OljMjMzjfnm42juvfdek5CQYLp162YuvfRSk5CQYNasWfO9xw/AHkGmrc8vAIDlrr32WlVVVenjjz/29ygAcF54DSAAAIBlCEAAAADLEIAAAACW4TWAAAAAluEKIAAAgGUIQAAAAMsQgAAAAJYhAAEAACxDAAIAAFiGAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAyxCAAAAAliEAAQAALEMAAgAAWIYABAAAsAwBCAAAYBkCEAAAwDIBE4Dvvfee0tPTFRsbq6CgIG3evPl799m6dat++tOfyul06kc/+pGee+45n8wKAADgTwETgLW1tUpISNDq1atbtf2BAwc0YcIEjR07VmVlZbr77rt1++2366233urwWQEAAPwpyBhj/D1EewsKCtJrr72miRMntrjNfffdpy1btujjjz/2rN1yyy06ceKECgsLfTQpAACA7wXMFcC2KikpUWpqqtdaWlqaSkpK/DYTAACAL3Ty9wD+UlFRoaioKK+1qKgo1dTU6Ouvv1aXLl2a7FNXV6e6ujrP1263W8ePH9fll1+uoKAgn8wNAAB+GGOMTp48qdjYWAUH23ktzNoAPB85OTl6+OGH/T0GAABoB0eOHFGvXr38PYZfWBuA0dHRqqys9FqrrKxUWFhYs1f/JGnhwoXKysryfF1dXa3evXvryJEjCgsL6/CZAQDAD1dTUyOXy6Vu3br5exS/sTYAU1JSVFBQ4LVWVFSklJSUFvdxOp1yOp1N1sPCwghAAAAuMja/fCtgnvg+deqUysrKVFZWJn3zMS9lZWU6fPiw9M3Vu2nTpnm2nzVrlsrLy/Wb3/xGe/bs0Zo1a/Tyyy9r/vz5fjsGAAAAXwiYAPzwww911VVX6aqrrpIkZWVl6aqrrtKiRYskSV988YUnBiXpiiuu0JYtW1RUVKSEhAStWLFCf/jDH5SWlua3YwAAAPCFgPwcQF+pqalReHi4qqureQoYAICLBI/fAXQFEAAAAK1DAAIAAFiGAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAyxCAAAAAliEAAQAALEMAAgAAWIYABAAAsAwBCAAAYBkCEAAAwDIEIAAAgGUIQAAAAMsQgAAAAJYhAAEAACxDAAIAAFiGAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAyxCAAAAAliEAAQAALEMAAgAAWIYABAAAsAwBCAAAYBkCEAAAwDIEIAAAgGUIQAAAAMsQgAAAAJYhAAEAACxDAAIAAFiGAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAywRUAK5evVrx8fEKDQ1VcnKyduzYcc7tc3NzNWDAAHXp0kUul0vz58/XmTNnfDYvAACAPwRMAObn5ysrK0vZ2dnauXOnEhISlJaWpqNHjza7/YYNG7RgwQJlZ2dr9+7deuaZZ5Sfn6/777/f57MDAAD4UsAE4JNPPqk77rhD06dP109+8hPl5eXpkksu0fr165vd/v3339eoUaM0ZcoUxcfH67rrrtPkyZO/96ohAADAxS4gArC+vl6lpaVKTU31rAUHBys1NVUlJSXN7jNy5EiVlpZ6gq+8vFwFBQUaP368z+YGAADwh07+HqA9VFVVqbGxUVFRUV7rUVFR2rNnT7P7TJkyRVVVVbrmmmtkjFFDQ4NmzZp1zqeA6+rqVFdX5/m6pqamHY8CAADANwLiCuD52Lp1q5YsWaI1a9Zo586devXVV7VlyxY98sgjLe6Tk5Oj8PBwz83lcvl0ZgAAgPYQZIwx/h7ih6qvr9cll1yiTZs2aeLEiZ71zMxMnThxQv/1X//VZJ/Ro0drxIgRWr58uWfthRde0J133qlTp04pOLhpGzd3BdDlcqm6ulphYWEdcmwAAKB91dTUKDw83OrH74C4AuhwOJSUlKTi4mLPmtvtVnFxsVJSUprd5/Tp000iLyQkRJLUUhM7nU6FhYV53QAAAC42AfEaQEnKyspSZmamhg0bpuHDhys3N1e1tbWaPn26JGnatGmKi4tTTk6OJCk9PV1PPvmkrrrqKiUnJ2v//v166KGHlJ6e7glBAACAQBQwAZiRkaFjx45p0aJFqqioUGJiogoLCz1vDDl8+LDXFb8HH3xQQUFBevDBB/XZZ5+pZ8+eSk9P12OPPebHowAAAOh4AfEaQH/hNQQAAFx8ePwOkNcAAgAAoPUIQAAAAMsQgAAAAJYhAAEAACxDAAIAAFiGAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAyxCAAAAAliEAAQAALEMAAgAAWIYABAAAsAwBCAAAYBkCEAAAwDIEIAAAgGUIQAAAAMsQgAAAAJYhAAEAACxDAAIAAFiGAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAyxCAAAAAliEAAQAALEMAAgAAWIYABAAAsAwBCAAAYBkCEAAAwDIEIAAAgGUIQAAAAMsQgAAAAJYhAAEAACxDAAIAAFiGAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgmYAKwNWrVys+Pl6hoaFKTk7Wjh07zrn9iRMnNGfOHMXExMjpdKp///4qKCjw2bwAAAD+0MnfA7SX/Px8ZWVlKS8vT8nJycrNzVVaWpr27t2ryMjIJtvX19dr3LhxioyM1KZNmxQXF6dDhw6pe/fufpkfAADAV4KMMcbfQ7SH5ORkXX311Vq1apUkye12y+Vyae7cuVqwYEGT7fPy8rR8+XLt2bNHnTt3Pq/7rKmpUXh4uKqrqxUWFvaDjwEAAHQ8Hr8D5Cng+vp6lZaWKjU11bMWHBys1NRUlZSUNLvP66+/rpSUFM2ZM0dRUVEaPHiwlixZosbGxhbvp66uTjU1NV43AACAi01ABGBVVZUaGxsVFRXltR4VFaWKiopm9ykvL9emTZvU2NiogoICPfTQQ1qxYoUeffTRFu8nJydH4eHhnpvL5Wr3YwEAAOhoARGA58PtdisyMlJPP/20kpKSlJGRoQceeEB5eXkt7rNw4UJVV1d7bkeOHPHpzAAAAO0hIN4EEhERoZCQEFVWVnqtV1ZWKjo6utl9YmJi1LlzZ4WEhHjWrrzySlVUVKi+vl4Oh6PJPk6nU06nswOOAAAAwHcC4gqgw+FQUlKSiouLPWtut1vFxcVKSUlpdp9Ro0Zp//79crvdnrV9+/YpJiam2fgDAAAIFAERgJKUlZWldevW6fnnn9fu3bt11113qba2VtOnT5ckTZs2TQsXLvRsf9ddd+n48eOaN2+e9u3bpy1btmjJkiWaM2eOH48CAACg4wXEU8CSlJGRoWPHjmnRokWqqKhQYmKiCgsLPW8MOXz4sIKD/793XS6X3nrrLc2fP19Dhw5VXFyc5s2bp/vuu8+PRwEAANDxAuZzAP2BzxECAODiw+N3AD0FDAAAgNYhAAEAACxDAAIAAFiGAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAyxCAAAAAliEAAQAALEMAAgAAWIYABAAAsAwBCAAAYBkCEAAAwDIEIAAAgGUIQAAAAMsQgAAAAJYhAAEAACxDAAIAAFiGAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAyxCAAAAAliEAAQAALEMAAgAAWIYABAAAsAwBCAAAYBkCEAAAwDIEIAAAgGUIQAAAAMsQgAAAAJYhAAEAACxDAAIAAFiGAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQIqAFevXq34+HiFhoYqOTlZO3bsaNV+GzduVFBQkCZOnNjhMwIAAPhbwARgfn6+srKylJ2drZ07dyohIUFpaWk6evToOfc7ePCg7rnnHo0ePdpnswIAAPhTwATgk08+qTvuuEPTp0/XT37yE+Xl5emSSy7R+vXrW9ynsbFRt956qx5++GH17dvXp/MCAAD4S0AEYH19vUpLS5WamupZCw4OVmpqqkpKSlrc77e//a0iIyM1Y8aMVt1PXV2dampqvG4AAAAXm4AIwKqqKjU2NioqKsprPSoqShUVFc3us23bNj3zzDNat25dq+8nJydH4eHhnpvL5frBswMAAPhaQARgW508eVJTp07VunXrFBER0er9Fi5cqOrqas/tyJEjHTonAABAR+jk7wHaQ0REhEJCQlRZWem1XllZqejo6Cbbf/rppzp48KDS09M9a263W5LUqVMn7d27V/369Wuyn9PplNPp7JBjAAAA8JWAuALocDiUlJSk4uJiz5rb7VZxcbFSUlKabD9w4EB99NFHKisr89xuvPFGjR07VmVlZTy1CwAAAlpAXAGUpKysLGVmZmrYsGEaPny4cnNzVVtbq+nTp0uSpk2bpri4OOXk5Cg0NFSDBw/22r979+6S1GQdAAAg0ARMAGZkZOjYsWNatGiRKioqlJiYqMLCQs8bQw4fPqzg4IC44AkAAPCDBBljjL+HuFjV1NQoPDxc1dXVCgsL8/c4AACgFXj8DpDXAAIAAKD1CEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAyxCAAAAAliEAAQAALEMAAgAAWIYABAAAsAwBCAAAYBkCEAAAwDIEIAAAgGUIQAAAAMsQgAAAAJYhAAEAACxDAAIAAFiGAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAyxCAAAAAliEAAQAALEMAAgAAWIYABAAAsAwBCAAAYBkCEAAAwDIEIAAAgGUIQAAAAMsQgAAAAJYhAAEAACxDAAIAAFiGAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAyxCAAAAAliEAAQAALEMAAgAAWIYABAAAsAwBCAAAYJmACsDVq1crPj5eoaGhSk5O1o4dO1rcdt26dRo9erR69OihHj16KDU19ZzbAwAABIqACcD8/HxlZWUpOztbO3fuVEJCgtLS0nT06NFmt9+6dasmT56sd999VyUlJXK5XLruuuv02Wef+Xx2AAAAXwoyxhh/D9EekpOTdfXVV2vVqlWSJLfbLZfLpblz52rBggXfu39jY6N69OihVatWadq0aa26z5qaGoWHh6u6ulphYWE/+BgAAEDH4/E7QK4A1tfXq7S0VKmpqZ614OBgpaamqqSkpFU/4/Tp0zp79qwuu+yyFrepq6tTTU2N1w0AAOBiExABWFVVpcbGRkVFRXmtR0VFqaKiolU/47777lNsbKxXRH5XTk6OwsPDPTeXy/WDZwcAAPC1gAjAH2rp0qXauHGjXnvtNYWGhra43cKFC1VdXe25HTlyxKdzAgAAtIdO/h6gPURERCgkJESVlZVe65WVlYqOjj7nvk888YSWLl2qt99+W0OHDj3ntk6nU06ns11mBgAA8JeAuALocDiUlJSk4uJiz5rb7VZxcbFSUlJa3G/ZsmV65JFHVFhYqGHDhvloWgAAAP8KiCuAkpSVlaXMzEwNGzZMw4cPV25urmprazV9+nRJ0rRp0xQXF6ecnBxJ0uOPP65FixZpw4YNio+P97xWsGvXruratatfjwUAAKAjBUwAZmRk6NixY1q0aJEqKiqUmJiowsJCzxtDDh8+rODg/7/guXbtWtXX1+vmm2/2+jnZ2dlavHixz+cHAADwlYD5HEB/4HOEAAC4+PD4HSCvAQQAAEDrEYAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAyxCAAAAAliEAAQAALEMAAgAAWIYABAAAsAwBCAAAYBkCEAAAwDIEIAAAgGUIQAAAAMsQgAAAAJYhAAEAACxDAAIAAFiGAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAyxCAAAAAliEAAQAALEMAAgAAWIYABAAAsAwBCAAAYBkCEAAAwDIEIAAAgGUIQAAAAMsQgAAAAJYhAAEAACxDAAIAAFiGAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAyxCAAAAAliEAAQAALEMAAgAAWIYABAAAsAwBCAAAYBkCEAAAwDIBFYCrV69WfHy8QkNDlZycrB07dpxz+1deeUUDBw5UaGiohgwZooKCAp/NCgAA4C8BE4D5+fnKyspSdna2du7cqYSEBKWlpeno0aPNbv/+++9r8uTJmjFjhnbt2qWJEydq4sSJ+vjjj30+OwAAgC8FGWOMv4doD8nJybr66qu1atUqSZLb7ZbL5dLcuXO1YMGCJttnZGSotrZWb7zxhmdtxIgRSkxMVF5eXqvus6amRuHh4aqurlZYWFg7Hg0AAOgoPH5Lnfw9QHuor69XaWmpFi5c6FkLDg5WamqqSkpKmt2npKREWVlZXmtpaWnavHlzi/dTV1enuro6z9fV1dXSN/9DAgAAF4dvH7cD5BrYeQmIAKyqqlJjY6OioqK81qOiorRnz55m96moqGh2+4qKihbvJycnRw8//HCTdZfLdd6zAwAA//jyyy8VHh7u7zH8IiAC0FcWLlzoddXwxIkT6tOnjw4fPmzt/4AuFDU1NXK5XDpy5Ii1l/MvFJyLCwvn48LBubhwVFdXq3fv3rrsssv8PYrfBEQARkREKCQkRJWVlV7rlZWVio6Obnaf6OjoNm0vSU6nU06ns8l6eHg4/5gvEGFhYZyLCwTn4sLC+bhwcC4uHMHBAfNe2DYLiCN3OBxKSkpScXGxZ83tdqu4uFgpKSnN7pOSkuK1vSQVFRW1uD0AAECgCIgrgJKUlZWlzMxMDRs2TMOHD1dubq5qa2s1ffp0SdK0adMUFxennJwcSdK8efM0ZswYrVixQhMmTNDGjRv14Ycf6umnn/bzkQAAAHSsgAnAjIwMHTt2TIsWLVJFRYUSExNVWFjoeaPH4cOHvS71jhw5Uhs2bNCDDz6o+++/Xz/+8Y+1efNmDR48uNX36XQ6lZ2d3ezTwvAtzsWFg3NxYeF8XDg4FxcOzkUAfQ4gAAAAWicgXgMIAACA1iMAAQAALEMAAgAAWIYABAAAsAwB+D1Wr16t+Ph4hYaGKjk5WTt27Djn9q+88ooGDhyo0NBQDRkyRAUFBT6bNdC15VysW7dOo0ePVo8ePdSjRw+lpqZ+77lD67X138W3Nm7cqKCgIE2cOLHDZ7RFW8/FiRMnNGfOHMXExMjpdKp///78d6odtfV85ObmasCAAerSpYtcLpfmz5+vM2fO+GzeQPXee+8pPT1dsbGxCgoK0ubNm793n61bt+qnP/2pnE6nfvSjH+m5557zyax+Y9CijRs3GofDYdavX2/+9re/mTvuuMN0797dVFZWNrv99u3bTUhIiFm2bJn55JNPzIMPPmg6d+5sPvroI5/PHmjaei6mTJliVq9ebXbt2mV2795tbrvtNhMeHm7+8Y9/+Hz2QNPWc/GtAwcOmLi4ODN69Gjzi1/8wmfzBrK2nou6ujozbNgwM378eLNt2zZz4MABs3XrVlNWVubz2QNRW8/Hiy++aJxOp3nxxRfNgQMHzFtvvWViYmLM/PnzfT57oCkoKDAPPPCAefXVV40k89prr51z+/LycnPJJZeYrKws88knn5iVK1eakJAQU1hY6LOZfY0APIfhw4ebOXPmeL5ubGw0sbGxJicnp9ntJ02aZCZMmOC1lpycbGbOnNnhswa6tp6L72poaDDdunUzzz//fAdOaYfzORcNDQ1m5MiR5g9/+IPJzMwkANtJW8/F2rVrTd++fU19fb0Pp7RHW8/HnDlzzM9//nOvtaysLDNq1KgOn9UmrQnA3/zmN2bQoEFeaxkZGSYtLa2Dp/MfngJuQX19vUpLS5WamupZCw4OVmpqqkpKSprdp6SkxGt7SUpLS2txe7TO+ZyL7zp9+rTOnj1r9R/+bg/ney5++9vfKjIyUjNmzPDRpIHvfM7F66+/rpSUFM2ZM0dRUVEaPHiwlixZosbGRh9OHpjO53yMHDlSpaWlnqeJy8vLVVBQoPHjx/tsbvwfGx+/A+YvgbS3qqoqNTY2ev6SyLeioqK0Z8+eZvepqKhodvuKiooOnTXQnc+5+K777rtPsbGxTf6Bo23O51xs27ZNzzzzjMrKynw0pR3O51yUl5frnXfe0a233qqCggLt379fs2fP1tmzZ5Wdne2jyQPT+ZyPKVOmqKqqStdcc42MMWpoaNCsWbN0//33+2hqfKulx++amhp9/fXX6tKli99m6yhcAUTAW7p0qTZu3KjXXntNoaGh/h7HKidPntTUqVO1bt06RURE+Hsc67ndbkVGRurpp59WUlKSMjIy9MADDygvL8/fo1lp69atWrJkidasWaOdO3fq1Vdf1ZYtW/TII4/4ezRYgCuALYiIiFBISIgqKyu91isrKxUdHd3sPtHR0W3aHq1zPufiW0888YSWLl2qt99+W0OHDu3gSQNfW8/Fp59+qoMHDyo9Pd2z5na7JUmdOnXS3r171a9fPx9MHnjO599FTEyMOnfurJCQEM/alVdeqYqKCtXX18vhcHT43IHqfM7HQw89pKlTp+r222+XJA0ZMkS1tbW688479cADD3j9/Xp0rJYev8PCwgLy6p+4Atgyh8OhpKQkFRcXe9bcbreKi4uVkpLS7D4pKSle20tSUVFRi9ujdc7nXEjSsmXL9Mgjj6iwsFDDhg3z0bSBra3nYuDAgfroo49UVlbmud14440aO3asysrK5HK5fHwEgeN8/l2MGjVK+/fv90S4JO3bt08xMTHE3w90Pufj9OnTTSLv2zj/v/cuwFesfPz297tQLmQbN240TqfTPPfcc+aTTz4xd955p+nevbupqKgwxhgzdepUs2DBAs/227dvN506dTJPPPGE2b17t8nOzuZjYNpJW8/F0qVLjcPhMJs2bTJffPGF53by5Ek/HkVgaOu5+C7eBdx+2nouDh8+bLp162Z+9atfmb1795o33njDREZGmkcffdSPRxE42no+srOzTbdu3cxLL71kysvLzX//93+bfv36mUmTJvnxKALDyZMnza5du8yuXbuMJPPkk0+aXbt2mUOHDhljjFmwYIGZOnWqZ/tvPwbm3nvvNbt37zarV6/mY2Bst3LlStO7d2/jcDjM8OHDzQcffOD53pgxY0xmZqbX9i+//LLp37+/cTgcZtCgQWbLli1+mDowteVc9OnTx0hqcsvOzvbT9IGlrf8u/hkB2L7aei7ef/99k5ycbJxOp+nbt6957LHHTENDgx8mD0xtOR9nz541ixcvNv369TOhoaHG5XKZ2bNnm6+++spP0weOd999t9nHgG9//5mZmWbMmDFN9klMTDQOh8P07dvXPPvss36a3jeCDNeZAQAArMJrAAEAACxDAAIAAFiGAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAyxCAAAAAliEAAQAALEMAAgAAWIYABAAAsAwBCAAAYBkCEAAAwDIEIAAAgGUIQAAAAMsQgAAAAJYhAAEAACxDAAIAAFiGAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADL/C88oWm6KoRVvwAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAApCklEQVR4nO3df1TUdb7H8RegM1gKWggKjpLuqq0/oMVENNfcg1F6ad1TV9KukNdK03VNTm3aD7GtxDQ77ipKuVntLZPilreTRJcot6vRuqHsqc0fa/hrK1AyQTFBmM/9o9PsToCBwYzO5/k4Z/7gw+fLvMfvGs/9zg+DjDFGAAAAsEawvwcAAACAbxGAAAAAliEAAQAALEMAAgAAWIYABAAAsAwBCAAAYBkCEAAAwDIEIAAAgGUIQAAAAMsQgABwkQgKCtKvfvUrf48BIAAQgAAkSc8995yCgoIUFBSkbdu2Nfm+MUYul0tBQUH6t3/7N6/vnTp1SllZWRo6dKguvfRSXX755YqPj9f8+fP1+eefe/YtWbLEcx/N3SoqKjr8cZ7LuWabPXu2X2cDgPbUyd8DALiwhIaGauPGjbrmmmu81v/0pz/pH//4h5xOp9f62bNn9bOf/Ux79uxRRkaG5s2bp1OnTulvf/ubNm7cqF/+8peKjo72OmbdunXq2rVrk/vu3r17uz+etpowYYLS09ObrA8cONAP0wBAxyAAAXiZOHGiXnnlFf3+979Xp07//E/Exo0blZCQoKqqKq/9mzdv1q5du/Tiiy9q2rRpXt87c+aM6uvrm9zHzTffrIiIiI55AD/QwIED9R//8R/+HgMAOhRPAQPwMnXqVH355ZcqKiryrNXX1ys/P79J4EnSp59+KkkaM2ZMk++FhoYqLCysXeYaOnSoxo8f32Td7XYrJiZGN998s2dt06ZNSkhIULdu3RQWFqZhw4bpd7/7XbvMIUnXXnuthg4dqtLSUo0ePVpdunTRFVdcodzc3CZ7jx49qpkzZyoqKkqhoaGKi4vT888/3+zj+N3vfqdhw4YpNDRUPXv21PXXX68PP/ywyd7Nmzdr6NChcjqdGjJkiAoLC72+f/LkSd19992KjY2V0+lUZGSkJkyYoJ07d7bbnwGAixsBCMBLbGyskpKS9NJLL3nW3nzzTVVXV+uWW25psr9fv36SpD/+8Y8yxrTqPo4fP66qqiqv24kTJ855TFpamt57770mrxPctm2bPv/8c89sRUVFmjp1qnr06KHHH39cy5Yt07XXXqvt27e3arYzZ840ma2qqqrJlcyvvvpKEydOVEJCgpYvX64+ffrorrvu0oYNGzx7vv76a1177bX6r//6L916661asWKFwsPDddtttzUJ0pkzZ+ruu++Wy+XS448/roULFyo0NFQffPBBk8c7Z84c3XLLLVq+fLnOnDmjm266SV9++aVnz+zZs7Vu3TrddNNNWrt2re655x516dJFu3fvbtWfAQALGAAwxjz77LNGkvnLX/5i1qxZY7p162ZOnz5tjDHm3//938348eONMcb069fPTJo0yXPc6dOnzaBBg4wk069fP3PbbbeZZ555xlRWVja5j6ysLCOp2dugQYPOOd/evXuNJLN69Wqv9Tlz5piuXbt6Zp0/f74JCwszDQ0Nbf4zaGk2Seall17y7Bs3bpyRZFauXOlZq6urM/Hx8SYyMtLU19cbY4xZtWqVkWReeOEFz776+nqTlJRkunbtampqaowxxrzzzjtGkvn1r3/dZCa32+01n8PhMPv37/es/fWvf23y5xIeHm7mzp3b5scPwB5cAQTQxJQpU/T111/rjTfe0MmTJ/XGG280+/SvJHXp0kV//vOfde+990r65t3EM2fOVO/evTVv3jzV1dU1Oea///u/VVRU5HV79tlnzznTwIEDFR8fr7y8PM9aY2Oj8vPzlZqaqi5dukj65o0ktbW1Xk9ht8UvfvGLJrMVFRU1efq5U6dOmjVrludrh8OhWbNm6ejRoyotLZUkFRQUqFevXpo6dapnX+fOnfXrX/9ap06d0p/+9CfPn0dQUJCysrKazBMUFOT1dXJysgYMGOD5evjw4QoLC1N5eblnrXv37vrzn//s9Q5sAPhXvAkEQBM9e/ZUcnKyNm7cqNOnT6uxsdHrNXbfFR4eruXLl2v58uU6dOiQiouL9cQTT2jNmjUKDw/Xo48+6rX/Zz/72Xm9CSQtLU3333+/PvvsM8XExGjr1q06evSo0tLSPHvmzJmjl19+WTfccINiYmJ03XXXacqUKbr++utbdR99+vRRcnLy9+6Ljo7WpZde6rX27TuFDx48qFGjRunQoUP68Y9/rOBg7/+vfeWVV0qSDh06JOmb11FGR0frsssu+9777du3b5O1Hj166KuvvvJ8vXz5cmVkZMjlcikhIUETJ05Uenq6+vfv/70/H4AduAIIoFnTpk3Tm2++qdzcXN1www2t/oiWfv366T//8z+1fft2de/eXS+++GK7zZSWliZjjF555RVJ0ssvv6zw8HCvuIuMjFRZWZlef/113XjjjXr33Xd1ww03KCMjo93m8KeQkJBm182/vP5yypQpKi8v1+rVqxUdHa0VK1ZoyJAhevPNN301JoALHAEIoFm//OUvFRwcrA8++KDFp3/PpUePHhowYIC++OKLdpvpiiuu0MiRI5WXl6eGhga9+uqrmjx5cpPPJnQ4HEpNTdXatWv16aefatasWfrjH/+o/fv3t9ssn3/+uWpra73W9u3bJ+mbN9JI38Tw3//+d7ndbq99e/bs8XxfkgYMGKDPP/9cx48fb7f5evfurTlz5mjz5s06cOCALr/8cj322GPt9vMBXNwIQADN6tq1q9atW6clS5YoNTW1xX1//etfm3w2oPTN05uffPKJBg0a1K5zpaWl6YMPPtCGDRtUVVXl9fSvJK93w0pScHCwhg8fLknNvh7xfDU0NOipp57yfF1fX6+nnnpKPXv2VEJCgqRvPlOxoqLC63WLDQ0NWr16tbp27apx48ZJkm666SYZY/Twww83uR/TyndWf6uxsVHV1dVea5GRkYqOjm7Xxw/g4sZrAAG0qDVPmxYVFSkrK0s33nijRo0apa5du6q8vFwbNmxQXV2dlixZ0uSY/Pz8Zv8lkAkTJigqKuqc9zdlyhTdc889uueee3TZZZc1eb3e7bffruPHj+vnP/+5+vTpo0OHDmn16tWKj4/3vPbuXPbt26cXXnihyXpUVJQmTJjg+To6OlqPP/64Dh48qIEDByovL09lZWV6+umn1blzZ0nSnXfeqaeeekq33XabSktLFRsbq/z8fG3fvl2rVq1St27dJEnjx4/X9OnT9fvf/15///vfdf3118vtduv//u//NH78+Db9+78nT55Unz59dPPNNysuLk5du3bV22+/rb/85S9auXJlq38OgADn3zchA7hQ/OvHwJzLdz8Gpry83CxevNiMGjXKREZGmk6dOpmePXuaSZMmmXfeecfr2HN9DIwk8+6777Zq1jFjxhhJ5vbbb2/yvfz8fHPdddeZyMhI43A4TN++fc2sWbPMF1988b0/91yzjRs3zrNv3LhxZsiQIebDDz80SUlJJjQ01PTr18+sWbOmyc+srKw0M2bMMBEREcbhcJhhw4aZZ599tsm+hoYGs2LFCjN48GDjcDhMz549zQ033GBKS0u95mvu41369etnMjIyjDHffBzNvffea+Li4ky3bt3MpZdeauLi4szatWu/9/EDsEeQMW18fgEALHfttdeqqqpKH3/8sb9HAYDzwmsAAQAALEMAAgAAWIYABAAAsAyvAQQAALAMVwABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAyxCAAAAAliEAAQAALEMAAgAAWIYABAAAsAwBCAAAYBkCEAAAwDIEIAAAgGUIQAAAAMsQgAAAAJYhAAEAACxDAAIAAFiGAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADLEIAAAACWCZgAfO+995Samqro6GgFBQVp8+bN33vM1q1b9dOf/lROp1M/+tGP9Nxzz3X4nAAAAP4WMAFYW1uruLg45eTktGr/gQMHNGnSJI0fP15lZWW6++67dfvtt+utt97q4EkBAAD8K8gYY/w9RHsLCgrSa6+9psmTJ7e457777tOWLVv08ccfe9ZuueUWnThxQoWFhT6YEgAAwD8C5gpgW5WUlCg5OdlrLSUlRSUlJX6aCAAAwDc6+XsAf6moqFBUVJTXWlRUlGpqavT111+rS5cuTY6pq6tTXV2d52u3263jx4/r8ssvV1BQUIfPDAAAfjhjjE6ePKno6GgFB9t5LczaADwf2dnZevjhh/09BgAAaAdHjhxRnz59/D2GX1gbgL169VJlZaXXWmVlpcLCwpq9+idJixYtUmZmpufr6upq9e3bV0eOHFFYWFiHzgsAANpHTU2NXC6XunXr5u9R/MbaAExKSlJBQYHXWlFRkZKSklo8xul0yul0NlkPCwsjAAEAuMjY/PKtgHni+9SpUyorK1NZWZmkbz7mpaysTIcPH5b0zdW79PR0z/7Zs2ervLxcv/nNb7Rnzx6tXbtWL7/8shYsWOCP8QEAAHwmYALwww8/1FVXXaWrrrpKkpSZmamrrrpKixcvliR98cUXnhiUpCuuuEJbtmxRUVGR4uLitHLlSv3hD39QSkqKX+YHAADwlYD8HEBfqampUXh4uKqrq3kKGACAiwS/vwPoCiAAAABahwAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAyxCAAAAAliEAAQAALEMAAgAAWIYABAAAsAwBCAAAYBkCEAAAwDIEIAAAgGUIQAAAAMsQgAAAAJYhAAEAACxDAAIAAFiGAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAyxCAAAAAliEAAQAALEMAAgAAWIYABAAAsAwBCAAAYBkCEAAAwDIEIAAAgGUIQAAAAMsQgAAAAJYhAAEAACxDAAIAAFiGAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAyxCAAAAAliEAAQAALEMAAgAAWIYABAAAsAwBCAAAYBkCEAAAwDIEIAAAgGUIQAAAAMsQgAAAAJYJqADMyclRbGysQkNDlZiYqB07dpxz/6pVqzRo0CB16dJFLpdLCxYs0JkzZ3w0LQAAgH8ETADm5eUpMzNTWVlZ2rlzp+Li4pSSkqKjR482u3/jxo1auHChsrKytHv3bj3zzDPKy8vT/fff7+PJAQAAfCtgAvDJJ5/UHXfcoRkzZugnP/mJcnNzdckll2jDhg3N7n///fc1ZswYTZs2TbGxsbruuus0derU771qCAAAcLELiACsr69XaWmpkpOTPWvBwcFKTk5WSUlJs8eMHj1apaWlnuArLy9XQUGBJk6c6JOZAQAA/KWTvwdoD1VVVWpsbFRUVJTXelRUlPbs2dPsMdOmTVNVVZWuueYaGWPU0NCg2bNnn/Mp4Lq6OtXV1Xm+rqmpaZ8HAAAA4EMBcQXwfGzdulVLly7V2rVrtXPnTr366qvasmWLHnnkkRaPyc7OVnh4uOfmcrl8ODEAAED7CDLGGH8P8UPV19frkksuUX5+viZPnuxZz8jI0IkTJ/Q///M/TY4ZO3asRo0apRUrVnjWXnjhBd155506deqUgoObtnFzVwBdLpeqq6sVFhbWvg8KAAB0iJqaGoWHh1v9+zsgrgA6HA4lJCSouLjYs+Z2u1VcXKykpKRmjzl9+nSTyAsJCZEktdTETqdTYWFhXjcAAICLTUC8BlCSMjMzlZGRoREjRmjkyJFatWqVamtrNWPGDElSenq6YmJilJ2dLUlKTU3Vk08+qauuukqJiYnav3+/HnroIaWmpnpCEAAAIBAFTACmpaXp2LFjWrx4sSoqKhQfH6/CwkLPG0MOHz7sdcXvwQcfVFBQkB588EF99tln6tmzp1JTU/XYY4/56yEAAAD4REC8BtBfeA0BAAAXH35/B8hrAAEAANB6BCAAAIBlCEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAyxCAAAAAliEAAQAALEMAAgAAWIYABAAAsAwBCAAAYBkCEAAAwDIEIAAAgGUIQAAAAMsQgAAAAJYhAAEAACxDAAIAAFiGAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAyxCAAAAAliEAAQAALEMAAgAAWIYABAAAsAwBCAAAYBkCEAAAwDIEIAAAgGUIQAAAAMsQgAAAAJYhAAEAACxDAAIAAFiGAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAyxCAAAAAliEAAQAALEMAAgAAWIYABAAAsExABWBOTo5iY2MVGhqqxMRE7dix45z7T5w4oblz56p3795yOp0aOHCgCgoKfDQtAACAf3Ty9wDtJS8vT5mZmcrNzVViYqJWrVqllJQU7d27V5GRkU3219fXa8KECYqMjFR+fr5iYmJ06NAhde/e3ffDAwAA+FCQMcb4e4j2kJiYqKuvvlpr1qyRJLndbrlcLs2bN08LFy5ssj83N1crVqzQnj171Llz5/O6z5qaGoWHh6u6ulphYWE/aH4AAOAb/P4OkKeA6+vrVVpaquTkZM9acHCwkpOTVVJS0uwxr7/+upKSkjR37lxFRUVp6NChWrp0qRobG1u8n7q6OtXU1HjdAAAALjYBEYBVVVVqbGxUVFSU13pUVJQqKiqaPaa8vFz5+flqbGxUQUGBHnroIa1cuVKPPvpoi/eTnZ2t8PBwz83lcrXr4wAAAPCFgAjA8+F2uxUZGamnn35aCQkJSktL0wMPPKDc3NwWj1m0aJGqq6s9tyNHjvhwYgAAgPYREG8CiYiIUEhIiCorK73WKysr1atXr2aP6d27tzp37qyQkBDP2pVXXqmKigrV19fL4XA0OcbpdMrpdLbv8AAAAD4WEFcAHQ6HEhISVFxc7Flzu90qLi5WUlJSs8eMGTNG+/fvl9vt9qzt27dPvXv3bjb+AAAAAkVABKAkZWZmav369Xr++ee1e/du3XXXXaqtrdWMGTMkSenp6Vq0aJFn/1133aXjx49r/vz52rdvn7Zs2aKlS5dq7ty5/noIAAAAPhEQTwFLUlpamo4dO6bFixeroqJC8fHxKiws9Lwx5PDhwwoO/mfvulwuvfXWW1qwYIGGDx+umJgYzZ8/X/fdd5+/HgIAAIBPBMznAPoDnyMEAMDFh9/fAfQUMAAAAFqHAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAyxCAAAAAliEAAQAALEMAAgAAWIYABAAAsAwBCAAAYBkCEAAAwDIEIAAAgGUIQAAAAMsQgAAAAJYhAAEAACxDAAIAAFiGAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAyxCAAAAAliEAAQAALEMAAgAAWIYABAAAsAwBCAAAYBkCEAAAwDIEIAAAgGUIQAAAAMsQgAAAAJYhAAEAACxDAAIAAFiGAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAyxCAAAAAlgmoAMzJyVFsbKxCQ0OVmJioHTt2tOq4TZs2KSgoSJMnT+7YAQEAAC4AAROAeXl5yszMVFZWlnbu3Km4uDilpKTo6NGj5zzu4MGDuueeezR27FgfTQoAAOBfAROATz75pO644w7NmDFDP/nJT5Sbm6tLLrlEGzZsaPGYxsZG3XrrrXr44YfVv39/H04LAADgPwERgPX19SotLVVycrJnLTg4WMnJySopKWnxuN/+9reKjIzUzJkzW3U/dXV1qqmp8boBAABcbAIiAKuqqtTY2KioqCiv9aioKFVUVDR7zLZt2/TMM89o/fr1rb6f7OxshYeHe24ul+sHzQ0AAOAPARGAbXXy5ElNnz5d69evV0RERKuPW7Rokaqrqz23I0eOdOCUAAAAHaOTvwdoDxEREQoJCVFlZaXXemVlpXr16tVk/6effqqDBw8qNTXVs+Z2uyVJnTp10t69ezVgwIAmxzmdTjmdznaeHgAAwLcC4gqgw+FQQkKCiouLPWtut1vFxcVKSkpqsn/w4MH66KOPVFZW5rndeOONGj9+vMrKynhqFwAABLSAuAIoSZmZmcrIyNCIESM0cuRIrVq1SrW1tZoxY4YkKT09XTExMcrOzlZoaKiGDh3qdXz37t0lqck6AABAoAmYAExLS9OxY8e0ePFiVVRUKD4+XoWFhZ43hhw+fFjBwQFxwRMAAOAHCTLGGH8PcbGqqalReHi4qqurFRYW5u9xAABAK/D7O0BeAwgAAIDWIwABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAyxCAAAAAliEAAQAALEMAAgAAWIYABAAAsAwBCAAAYBkCEAAAwDIEIAAAgGUIQAAAAMsQgAAAAJYhAAEAACxDAAIAAFiGAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAyxCAAAAAliEAAQAALEMAAgAAWIYABAAAsAwBCAAAYBkCEAAAwDIEIAAAgGUIQAAAAMsQgAAAAJYhAAEAACxDAAIAAFiGAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAyxCAAAAAliEAAQAALEMAAgAAWIYABAAAsAwBCAAAYBkCEAAAwDIEIAAAgGUCKgBzcnIUGxur0NBQJSYmaseOHS3uXb9+vcaOHasePXqoR48eSk5OPud+AACAQBEwAZiXl6fMzExlZWVp586diouLU0pKio4ePdrs/q1bt2rq1Kl69913VVJSIpfLpeuuu06fffaZjycHAADwrSBjjPH3EO0hMTFRV199tdasWSNJcrvdcrlcmjdvnhYuXPi9xzc2NqpHjx5as2aN0tPTW3WfNTU1Cg8PV3V1tcLCwn7Q/AAAwDf4/R0gVwDr6+tVWlqq5ORkz1pwcLCSk5NVUlLSqp9x+vRpnT17VpdddlmLe+rq6lRTU+N1AwAAuNgERABWVVWpsbFRUVFRXutRUVGqqKho1c+47777FB0d7RWR35Wdna3w8HDPzeVy/aC5AQAA/CEgAvCHWrZsmTZt2qTXXntNoaGhLe5btGiRqqurPbcjR474cEoAAID20cnfA7SHiIgIhYSEqLKy0mu9srJSvXr1OuexTzzxhJYtW6a3335bw4cPP+dep9Mpp9P5g+cFAADwp4C4AuhwOJSQkKDi4mLPmtvtVnFxsZKSklo8bvny5XrkkUdUWFioESNG+GJUAAAAvwuIK4CSlJmZqYyMDI0YMUIjR47UqlWrVFtbqxkzZkiS0tPTFRMTo+zsbEnS448/rsWLF2vjxo2KjY31vFawa9eu6tq1q98eBwAAQEcLmABMS0vTsWPHtHjxYlVUVCg+Pl6FhYWeN4YcPnxYwcH/vOC5bt061dfX6+abb/b6OVlZWVqyZIkvRwcAAPCpgPkcQH/gc4QAALj48Ps7QF4DCAAAgNYjAAEAACxDAAIAAFiGAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAyxCAAAAAliEAAQAALEMAAgAAWIYABAAAsAwBCAAAYBkCEAAAwDIEIAAAgGUIQAAAAMsQgAAAAJYhAAEAACxDAAIAAFiGAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAyxCAAAAAliEAAQAALEMAAgAAWIYABAAAsAwBCAAAYBkCEAAAwDIEIAAAgGUIQAAAAMsQgAAAAJYhAAEAACxDAAIAAFiGAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQIqAHNychQbG6vQ0FAlJiZqx44d59z/yiuvaPDgwQoNDdWwYcNUUFDgo0kBAAD8J2ACMC8vT5mZmcrKytLOnTsVFxenlJQUHT16tNn977//vqZOnaqZM2dq165dmjx5siZPnqyPP/7Yx5MDAAD4VpAxxvh7iPaQmJioq6++WmvWrJEkud1uuVwuzZs3TwsXLmyyPy0tTbW1tXrjjTc8a6NGjVJ8fLxyc3NbdZ81NTUKDw9XdXW1wsLC2ueBAACADsXvb6mTvwdoD/X19SotLdWiRYs8a8HBwUpOTlZJSUmzx5SUlCgzM9NrLSUlRZs3b27xfurq6lRXV+f5urq6WtI3/0MCAAAXh29/bwfINbDzEhABWFVVpcbGRkVFRXmtR0VFac+ePc0eU1FR0ez+ioqKFu8nOztbDz/8cJN1l8t1HlMDAAB/+vLLLxUeHu7vMfwiIALQVxYtWuR11fDEiRPq16+fDh8+bO3/gC4UNTU1crlcOnLkiLWX8y8UnIsLC+fjwsG5uHBUV1erb9++uuyyy/w9it8ERABGREQoJCRElZWVXuuVlZXq1atXs8f06tWrTfslyel0yul0NlkPDw/nL/MFIiwsjHNxgeBcXFg4HxcOzsWFIzg4YN4L22YB8cgdDocSEhJUXFzsWXO73SouLlZSUlKzxyQlJXntl6SioqIW9wMAAASKgLgCKEmZmZnKyMjQiBEjNHLkSK1atUq1tbWaMWOGJCk9PV0xMTHKzs6WJM2fP1/jxo3TypUrNWnSJG3atEkffvihnn76aX8+DAAAgA4XMAGYlpamY8eOafHixaqoqFB8fLwKCws9b/Q4fPiw16Xe0aNHa+PGjXrwwQd1//3368c//rE2b96soUOHtvo+nU6nsrKymn1aGL7FubhwcC4uLJyPCwfn4sLBuQigzwEEAABA6wTEawABAADQegQgAACAZQhAAAAAyxCAAAAAliEAv0dOTo5iY2MVGhqqxMRE7dix45z7X3nlFQ0ePFihoaEaNmyYCgoKfDRp4GvLuVi/fr3Gjh2rHj16qEePHkpOTv7ec4fWa+vfi29t2rRJQUFBmjx5cscOaJG2nosTJ05o7ty56t27t5xOpwYOHMh/p9pRW8/HqlWrNGjQIHXp0kUul0sLFizQmTNnfDRt4HrvvfeUmpqq6OhoBQUFafPmzd97zNatW/XTn/5UTqdTP/rRj/Tcc891+Jx+ZdCiTZs2GYfDYTZs2GD+9re/mTvuuMN0797dVFZWNrt/+/btJiQkxCxfvtx88skn5sEHHzSdO3c2H330kY8nDzxtPRfTpk0zOTk5ZteuXWb37t3mtttuM+Hh4eYf//iHjycPPG09F986cOCAiYmJMWPHjjW/+MUvfDNsgGvruairqzMjRowwEydONNu2bTMHDhwwW7duNWVlZT6ePDC19Xy8+OKLxul0mhdffNEcOHDAvPXWW6Z3795mwYIFPp488BQUFJgHHnjAvPrqq0aSee211865v7y83FxyySUmMzPTfPLJJ2b16tUmJCTEFBYW+mZgPyAAz2HkyJFm7ty5nq8bGxtNdHS0yc7Obnb/lClTzKRJk7zWEhMTzaxZszp0Thu09Vx8V0NDg+nWrZt5/vnnO2pEa5zPuWhoaDCjR482f/jDH0xGRgYB2E7aei7WrVtn+vfvb+rr6301olXaej7mzp1rfv7zn3utZWZmmjFjxnTonLZpTQD+5je/MUOGDPFaS0tLMykpKR04mX/xFHAL6uvrVVpaquTkZM9acHCwkpOTVVJS0uwxJSUlXvslKSUlpcX9aJ3zORffdfr0aZ09e9bqf/i7PZzvufjtb3+ryMhIzZw50xdjWuF8zsXrr7+upKQkzZ07V1FRURo6dKiWLl2qxsZGX40dsM7nfIwePVqlpaWep4nLy8tVUFCgiRMn+mRm/JONv78D5l8CaW9VVVVqbGz0/Esi34qKitKePXuaPaaioqLZ/RUVFR02pw3O51x813333afo6Ogmf8HRNudzLrZt26ZnnnlGZWVlPpjQHudzLsrLy/XOO+/o1ltvVUFBgfbv3685c+bo7NmzysrK8sXYAet8zse0adNUVVWla665RsYYNTQ0aPbs2br//vt9MTL+RUu/v2tqavT111+rS5cufpqs43AFEAFv2bJl2rRpk1577TWFhob6exyrnDx5UtOnT9f69esVERHh73Gs53a7FRkZqaeffloJCQlKS0vTAw88oNzcXH+PZqWtW7dq6dKlWrt2rXbu3KlXX31VW7Zs0SOPPOLv0WABrgC2ICIiQiEhIaqsrPRar6ysVK9evZo9plevXm3aj9Y5n3PxrSeeeELLli3T22+/reHDh3fkmFZo67n49NNPdfDgQaWmpnrW3G63JKlTp07au3evBgwY0LFDB6jz+XvRu3dvde7cWSEhIZ61K6+8UhUVFaqvr5fD4ejQmQPZ+ZyPhx56SNOnT9ftt98uSRo2bJhqa2t155136oEHHvD69+vRsVr6/R0WFhaQV/8krgC2yOFwKCEhQcXFxZ41t9ut4uJiJSUlNXtMUlKS135JKioqanE/Wud8zoUkLV++XI888ogKCws1YsQIX4wa8Np6LgYPHqyPPvpIZWVlntuNN96o8ePHq6ysTC6Xy5fjB5Tz+XsxZswY7d+/3xPhkrRv3z717t2b+PuBzud8nD59uknkfRvnxpiOGxZNWPn729/vQrmQbdq0yTidTvPcc8+ZTz75xNx5552me/fupqKiwhhjzPTp083ChQs9+7dv3246depknnjiCbN7926TlZXFx8C0k7aei2XLlhmHw2Hy8/PNF1984bmdPHnSXw8hYLT1XHwX7wJuP209F4cPHzbdunUzv/rVr8zevXvNG2+8YSIjI82jjz7qr4cQUNp6PrKysky3bt3MSy+9ZMrLy83//u//mgEDBpgpU6b46yEEjJMnT5pdu3aZXbt2GUnmySefNLt27TKHDh0yxhizcOFCM336dM/+bz8G5t577zW7d+82OTk5fAyM7VavXm369u1rHA6HGTlypPnggw883xs3bpzJyMjw2v/yyy+bgQMHGofDYYYMGWK2bNni44kDV1vORb9+/YykJresrCzfDx6A2vr34l8RgO2rrefi/fffN4mJicbpdJr+/fubxx57zDQ0NPh46sDVlvNx9uxZs2TJEjNgwAATGhpqXC6XmTNnjvnqq698P3iAeffdd5v9HfDtn39GRoYZN25ck2Pi4+ONw+Ew/fv3N88++6zP5/alIGO4zgwAAGATXgMIAABgGQIQAADAMgQgAACAZQhAAAAAyxCAAAAAliEAAQAALEMAAgAAWIYABAAAsAwBCAAAYBkCEAAAwDIEIAAAgGUIQAAAAMsQgAAAAJYhAAEAACxDAAIAAFiGAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAyxCAAAAAliEAAQAALEMAAgAAWOb/ATyhabrGscARAAAAAElFTkSuQmCC",
"text/html": [
"\n",
" <div style=\"display: inline-block;\">\n",
" <div class=\"jupyter-widgets widget-label\" style=\"text-align: center;\">\n",
" Figure\n",
" </div>\n",
- " <img src='' width=640.0/>\n",
+ " <img src='' width=640.0/>\n",
" </div>\n",
" "
],
@@ -469,8 +515,7 @@
},
{
"cell_type": "code",
- "execution_count": 12,
- "execution_state": "idle",
+ "execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
@@ -484,18 +529,194 @@
"name": "stderr",
"output_type": "stream",
"text": [
- " 0%| | 0/64 [00:00<?, ?it/s]\n"
- ]
- },
- {
- "ename": "NameError",
- "evalue": "name 'mkbatch' is not defined",
- "output_type": "error",
- "traceback": [
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
- "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
- "Cell \u001b[0;32mIn[12], line 8\u001b[0m\n\u001b[1;32m 6\u001b[0m train_loss \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m0\u001b[39m\n\u001b[1;32m 7\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i \u001b[38;5;129;01min\u001b[39;00m tqdm(\u001b[38;5;28mrange\u001b[39m(BPE)):\n\u001b[0;32m----> 8\u001b[0m batch_src, batch_labels, batch_padding_mask \u001b[38;5;241m=\u001b[39m \u001b[43mmkbatch\u001b[49m(BSZ)\n\u001b[1;32m 9\u001b[0m optimizer\u001b[38;5;241m.\u001b[39mzero_grad()\n\u001b[1;32m 10\u001b[0m output \u001b[38;5;241m=\u001b[39m model(batch_src, batch_padding_mask)\n",
- "\u001b[0;31mNameError\u001b[0m: name 'mkbatch' is not defined"
+ " ",
+ "9",
+ "3",
+ "%",
+ "|",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "█",
+ "▌",
+ " ",
+ " ",
+ " ",
+ " ",
+ " ",
+ " ",
+ " ",
+ " ",
+ " ",
+ " ",
+ "|",
+ " ",
+ "2",
+ "3",
+ "8",
+ "/",
+ "2",
+ "5",
+ "6",
+ " ",
+ "[",
+ "0",
+ "1",
+ ":",
+ "1",
+ "3",
+ "<",
+ "0",
+ "0",
+ ":",
+ "0",
+ "5",
+ ",",
+ " ",
+ " ",
+ "3",
+ ".",
+ "5",
+ "3",
+ "i",
+ "t",
+ "/",
+ "s",
+ "]"
]
}
],
@@ -503,6 +724,9 @@
"train_err = []\n",
"test_err = []\n",
"\n",
+ "# clear loss file\n",
+ "open('loss', 'w').close()\n",
+ "\n",
"for epoch in range(NEPOCHS):\n",
" model.train()\n",
" train_loss = 0\n",
@@ -511,15 +735,15 @@
" optimizer.zero_grad()\n",
" output = model(batch_src, batch_padding_mask)\n",
" loss = criterion(output.squeeze(1), batch_labels)\n",
- " train_loss += loss.item() / BPEREPOCH\n",
+ " train_loss += loss.item() / BPE\n",
" loss.backward()\n",
" optimizer.step()\n",
"\n",
" test_loss = evaluate()\n",
- " \n",
+ " \n",
" test_err.append(test_loss)\n",
" train_err.append(train_loss)\n",
- " with open(\"loss\", \"a\") as f:\n",
+ " with open('loss', 'a') as f:\n",
" f.write(f\"{train_loss} {test_loss}\\n\")\n",
" print(f\"Epoch {epoch + 1}/{NEPOCHS} \\t Train Err: {train_loss:.4f} \\t Test Err: {test_loss:.4f}\")\n",
" ax.plot(train_err, label='Train', color='blue')\n",
@@ -528,14 +752,13 @@
" ax.set_ylabel('MSE')\n",
" fig.canvas.draw()\n",
"\n",
- " if epoch % 100 == 99:\n",
+ " if epoch % 10 == 9:\n",
" torch.save(model.state_dict(), f\"model_weights_{epoch}.pth\")"
]
},
{
"cell_type": "code",
"execution_count": 57,
- "execution_state": "idle",
"metadata": {},
"outputs": [
{
@@ -556,7 +779,6 @@
{
"cell_type": "code",
"execution_count": null,
- "execution_state": "running",
"metadata": {
"id": "LoGEmM5lH7_A"
},
@@ -570,7 +792,6 @@
{
"cell_type": "code",
"execution_count": null,
- "execution_state": "running",
"metadata": {},
"outputs": [],
"source": [
@@ -580,7 +801,6 @@
{
"cell_type": "code",
"execution_count": null,
- "execution_state": "running",
"metadata": {},
"outputs": [],
"source": [
@@ -590,7 +810,6 @@
{
"cell_type": "code",
"execution_count": null,
- "execution_state": "running",
"metadata": {},
"outputs": [],
"source": [
@@ -600,7 +819,6 @@
{
"cell_type": "code",
"execution_count": null,
- "execution_state": "running",
"metadata": {},
"outputs": [],
"source": [
@@ -613,7 +831,6 @@
{
"cell_type": "code",
"execution_count": null,
- "execution_state": "running",
"metadata": {},
"outputs": [],
"source": [
@@ -632,7 +849,6 @@
{
"cell_type": "code",
"execution_count": null,
- "execution_state": "running",
"metadata": {},
"outputs": [],
"source": [
@@ -647,7 +863,6 @@
{
"cell_type": "code",
"execution_count": null,
- "execution_state": "running",
"metadata": {},
"outputs": [],
"source": [
@@ -664,7 +879,6 @@
{
"cell_type": "code",
"execution_count": null,
- "execution_state": "running",
"metadata": {},
"outputs": [],
"source": [
@@ -679,7 +893,6 @@
{
"cell_type": "code",
"execution_count": 13,
- "execution_state": "idle",
"metadata": {},
"outputs": [
{
@@ -698,6 +911,9 @@
"tune_train_err = []\n",
"tune_test_err = []\n",
"\n",
+ "# clear loss file\n",
+ "open('tune_loss', 'w').close()\n",
+ "\n",
"for epoch in range(N_TUNE_EPOCHS):\n",
" model.train()\n",
" train_loss = 0\n",
@@ -714,7 +930,7 @@
" \n",
" tune_test_err.append(test_loss)\n",
" tune_train_err.append(train_loss)\n",
- " with open(\"tune_loss\", \"a\") as f:\n",
+ " with open('tune_loss', 'a') as f:\n",
" f.write(f\"{train_loss} {test_loss}\\n\")\n",
" ax.plot(tune_train_err, label='Train', color='blue')\n",
" ax.plot(tune_test_err, label='Test', color='red')\n",
@@ -757,7 +973,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.12.7"
+ "version": "3.12.3"
}
},
"nbformat": 4,