diff options
Diffstat (limited to 'transformer_shortest_paths.ipynb')
-rw-r--r-- | transformer_shortest_paths.ipynb | 1346 |
1 files changed, 976 insertions, 370 deletions
diff --git a/transformer_shortest_paths.ipynb b/transformer_shortest_paths.ipynb index 1c6cdc6..71a40fe 100644 --- a/transformer_shortest_paths.ipynb +++ b/transformer_shortest_paths.ipynb @@ -11,7 +11,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 9, "execution_state": "idle", "metadata": { "colab": { @@ -24,6 +24,7 @@ "source": [ "from collections import deque\n", "import pickle\n", + "# using tqdm.auto glitches out collaborative editing\n", "from tqdm import tqdm\n", "\n", "import torch\n", @@ -31,8 +32,8 @@ "import pickle\n", "from math import sqrt\n", "from torch.utils.data import DataLoader, TensorDataset\n", - "%matplotlib widget\n", "import matplotlib.pyplot as plt\n", + "# %matplotlib widget\n", "torch.manual_seed(42)\n", "\n", "import os\n", @@ -40,12 +41,15 @@ "import ipdb\n", "\n", "import random\n", - "random.seed(42)" + "random.seed(42)\n", + "\n", + "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", + "assert device.type == 'cuda', \"CUDA is not available. Please check your GPU setup.\"" ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 8, "execution_state": "idle", "metadata": { "id": "lylOX2POPwFL" @@ -55,9 +59,10 @@ "SEQ_LEN = 65 # means 32 edges, final token is the target vertex\n", "PAD_TOKEN = 0\n", "AVG_DEG = 2\n", - "MAX_VTXS = SEQ_LEN//AVG_DEG - 1 # 31\n", + "MAX_VTXS = SEQ_LEN//AVG_DEG + 1 # 32 (exclusive)\n", "MIN_VTXS = 8\n", "MAX_TUNE_VTXS = 16\n", + "PAD_TOKEN = 0\n", "# vertices are labelled 1,2,...,63\n", "# we also have a padding token which is 0." ] @@ -73,7 +78,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 18, "execution_state": "idle", "metadata": { "colab": { @@ -82,18 +87,9 @@ "id": "1IbzGIWseK3E", "outputId": "a3cbc233-358c-4e17-ea6e-f4e9349d886b" }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 23/23 [00:06<00:00, 3.52it/s]\n" - ] - } - ], + "outputs": [], "source": [ "# original task data\n", - "NTRAIN1 = 300_000\n", "# the data will be edge lists\n", "# like this: [1 3 1 5 2 4 0 0 0 0 2]\n", "# this represents edges (1,3), (1,5) (2,4)\n", @@ -141,33 +137,23 @@ " else:\n", " return dist\n", "\n", - "graphs1 = []\n", - "distance1 = []\n", - "\n", - "for n in tqdm(range(MIN_VTXS, MAX_VTXS)):\n", - " for _ in range(NTRAIN1//(MAX_VTXS - MIN_VTXS)):\n", + "def mkbatch(size):\n", + " graphs1 = []\n", + " distance1 = []\n", + " \n", + " for i in range(size):\n", + " n = random.randrange(MIN_VTXS, MAX_VTXS)\n", " edge_list, adj_list = random_graph(n)\n", " dist = SSSP(n, adj_list)\n", " edge_list[-1] = 2 # target token\n", " graphs1.append(edge_list)\n", " distance1.append(dist)\n", + " \n", + " data = torch.tensor(graphs1, device=device)\n", + " labels = torch.tensor(distance1, dtype=torch.float32, device=device)\n", + " padding = data == PAD_TOKEN\n", + " return data, labels, padding\n", "\n", - "data = {\n", - " \"data\": torch.tensor(graphs1),\n", - " \"labels\": torch.tensor(distance1, dtype=torch.float32)\n", - "}\n", - "\n", - "with open('data.pkl', 'wb') as file:\n", - " pickle.dump(data, file)" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "execution_state": "idle", - "metadata": {}, - "outputs": [], - "source": [ "def vertices_on_shortest_12_path(n, G, target=2):\n", " dist = [n for _ in G]\n", " parent = [-1 for _ in G]\n", @@ -187,24 +173,14 @@ " x = parent[x]\n", " path.append(x)\n", " return list(reversed(path))\n", - " return []" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "execution_state": "idle", - "metadata": {}, - "outputs": [], - "source": [ - "# fine tuning data\n", - "NTRAIN2 = 2000\n", - "\n", - "graphs2 = []\n", - "distance2 = []\n", + " return []\n", "\n", - "for n in range(MIN_VTXS, MAX_TUNE_VTXS):\n", - " for _ in range(NTRAIN2//(MAX_TUNE_VTXS - MIN_VTXS)):\n", + "def mktunebatch(size):\n", + " graphs2 = []\n", + " distance2 = []\n", + " \n", + " for i in range(size):\n", + " n = random.randrange(MIN_VTXS, MAX_TUNE_VTXS)\n", " while True:\n", " edge_list, adj_list = random_graph(n)\n", " path = vertices_on_shortest_12_path(n, adj_list)\n", @@ -215,68 +191,51 @@ " graphs2.append(edge_list)\n", " distance2.append(target_vtx_idx)\n", " break\n", - "\n", - "tune_data = {\n", - " \"data\": torch.tensor(graphs2),\n", - " \"labels\": torch.tensor(distance2, dtype=torch.float32)\n", - "}\n", - "\n", - "with open('tune_data.pkl', 'wb') as file:\n", - " pickle.dump(tune_data, file)" + " \n", + " data = torch.tensor(graphs2, device=device)\n", + " labels = torch.tensor(distance2, dtype=torch.float32, device=device)\n", + " padding = data == PAD_TOKEN\n", + " return data, labels, padding" ] }, { "cell_type": "code", - "execution_count": 18, - "execution_state": "idle", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "EpDBxcgaIPpJ", - "outputId": "37cf9577-8cd8-444c-ec1a-c6f4b6061b7f" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "pre-train dataset size = 149MB\n", - "fine-tune dataset = 1MB\n" - ] - } - ], - "source": [ - "print(f\"pre-train dataset size = {os.path.getsize('data.pkl')//(1024*1024)}MB\")\n", - "print(f\"fine-tune dataset = {os.path.getsize('tune_data.pkl')//(1024*1024)}MB\")" - ] - }, - { - "cell_type": "code", - "execution_count": 38, + "execution_count": 41, "execution_state": "idle", "metadata": {}, "outputs": [ { "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "f5d5ab87fe4145eb8728e6d950e749d8", - "version_major": 2, - "version_minor": 0 - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAl3klEQVR4nO3df4xV9YH//xegM/iDGUSFkQJKa1dlFYwgMNutn1pZR0ubumKCrWmpUhvdgRRmq0jXgjZNaGh2q11UdmO29I9Sf2xWu8oKJVgxu079gUsKbiGtMYEGB+gPZpTKD5n7/WPL/TqVpfUHcwfej0dyE+ec9z33fd89zTxz5p5Lv0qlUgkAAMXoX+sJAADQuwQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhjqv1BI5m3d3d2bZtWwYNGpR+/frVejoAwJ+gUqnktddey/Dhw9O/f5nXwgTge7Bt27aMHDmy1tMAAN6FrVu3ZsSIEbWeRk0IwPdg0KBBye9PoIaGhlpPBwD4E3R1dWXkyJHV3+MlEoDvwcE/+zY0NAhAADjKlPzxrTL/8A0AUDABCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQmONqPQGOgDsaD7OvszdnAgD0Qa4AAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAUpqYB+M1vfjP9+vXLnDlzqtv27NmT1tbWnHrqqTn55JMzbdq0bN++vcfztmzZkqlTp+bEE0/M0KFDc8stt+TNN9/sMeapp57KRRddlPr6+px99tlZtmzZ217/nnvuyVlnnZWBAwdm0qRJee65547guwUA6BtqFoDPP/98/umf/iljx47tsX3u3Ll57LHH8vDDD2ft2rXZtm1brr766ur+AwcOZOrUqdm3b1+eeeaZfO9738uyZcuyYMGC6phXXnklU6dOzaWXXpr169dnzpw5+eIXv5hVq1ZVxzz44INpa2vLwoUL8+KLL2bcuHFpaWnJjh07emkFAABqo1+lUqn09ou+/vrrueiii3LvvffmG9/4Ri688MLcdddd6ezszOmnn57ly5fnmmuuSZJs2rQp5513Xtrb2zN58uQ88cQT+eQnP5lt27Zl2LBhSZKlS5dm3rx52blzZ+rq6jJv3rysWLEiGzdurL7mtddem127dmXlypVJkkmTJuXiiy/OkiVLkiTd3d0ZOXJkZs+endtuu+1Peh9dXV1pbGxMZ2dnGhoajsBKvUt3NB5mX2dvzgQA+pw++/u7F9XkCmBra2umTp2aKVOm9Ni+bt267N+/v8f2c889N6NGjUp7e3uSpL29PRdccEE1/pKkpaUlXV1deemll6pj/vDYLS0t1WPs27cv69at6zGmf//+mTJlSnXMoezduzddXV09HgAAR5vjevsFH3jggbz44ot5/vnn37avo6MjdXV1GTx4cI/tw4YNS0dHR3XMW+Pv4P6D+w43pqurK2+88UZ++9vf5sCBA4ccs2nTpv9z7osWLcqdd975jt8zAEBf0qtXALdu3Zovf/nL+f73v5+BAwf25ku/L+bPn5/Ozs7qY+vWrbWeEgDAO9arVwDXrVuXHTt25KKLLqpuO3DgQJ5++uksWbIkq1atyr59+7Jr164eVwG3b9+epqamJElTU9Pb7tY9eJfwW8f84Z3D27dvT0NDQ0444YQMGDAgAwYMOOSYg8c4lPr6+tTX17+nNejTfHYQAIrQq1cAL7vssmzYsCHr16+vPiZMmJDrrruu+t/HH3981qxZU33O5s2bs2XLljQ3NydJmpubs2HDhh53665evToNDQ0ZM2ZMdcxbj3FwzMFj1NXVZfz48T3GdHd3Z82aNdUxAADHql69Ajho0KCcf/75PbaddNJJOfXUU6vbZ86cmba2tgwZMiQNDQ2ZPXt2mpubM3ny5CTJ5ZdfnjFjxuRzn/tcFi9enI6Ojtx+++1pbW2tXp276aabsmTJktx666254YYb8uSTT+ahhx7KihUrqq/b1taWGTNmZMKECZk4cWLuuuuu7N69O9dff31vLgkAQK/r9ZtA/phvf/vb6d+/f6ZNm5a9e/empaUl9957b3X/gAED8vjjj+fmm29Oc3NzTjrppMyYMSNf//rXq2NGjx6dFStWZO7cubn77rszYsSI3H///WlpaamOmT59enbu3JkFCxako6MjF154YVauXPm2G0MAAI41NfkewGNFn/0eoXf7WT6fAQSgAH3293cv8m8BAwAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFOa4Wk+Aw7ij8TD7OntzJgDAMcQVQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgML0egDed999GTt2bBoaGtLQ0JDm5uY88cQT1f179uxJa2trTj311Jx88smZNm1atm/f3uMYW7ZsydSpU3PiiSdm6NChueWWW/Lmm2/2GPPUU0/loosuSn19fc4+++wsW7bsbXO55557ctZZZ2XgwIGZNGlSnnvuuSP4zgEA+oZeD8ARI0bkm9/8ZtatW5cXXnghH//4x/PpT386L730UpJk7ty5eeyxx/Lwww9n7dq12bZtW66++urq8w8cOJCpU6dm3759eeaZZ/K9730vy5Yty4IFC6pjXnnllUydOjWXXnpp1q9fnzlz5uSLX/xiVq1aVR3z4IMPpq2tLQsXLsyLL76YcePGpaWlJTt27OjlFQEA6F39KpVKpdaTGDJkSL71rW/lmmuuyemnn57ly5fnmmuuSZJs2rQp5513Xtrb2zN58uQ88cQT+eQnP5lt27Zl2LBhSZKlS5dm3rx52blzZ+rq6jJv3rysWLEiGzdurL7Gtddem127dmXlypVJkkmTJuXiiy/OkiVLkiTd3d0ZOXJkZs+endtuu+1PmndXV1caGxvT2dmZhoaG939h7mg8zL7OvvM8ADiKHPHf30eBmn4G8MCBA3nggQeye/fuNDc3Z926ddm/f3+mTJlSHXPuuedm1KhRaW9vT5K0t7fnggsuqMZfkrS0tKSrq6t6FbG9vb3HMQ6OOXiMffv2Zd26dT3G9O/fP1OmTKmOOZS9e/emq6urxwMA4GhTkwDcsGFDTj755NTX1+emm27KI488kjFjxqSjoyN1dXUZPHhwj/HDhg1LR0dHkqSjo6NH/B3cf3Df4cZ0dXXljTfeyK9+9ascOHDgkGMOHuNQFi1alMbGxupj5MiR73ElAAB6X00C8Jxzzsn69evz7LPP5uabb86MGTPyP//zP7WYyjsyf/78dHZ2Vh9bt26t9ZQAAN6x42rxonV1dTn77LOTJOPHj8/zzz+fu+++O9OnT8++ffuya9euHlcBt2/fnqampiRJU1PT2+7WPXiX8FvH/OGdw9u3b09DQ0NOOOGEDBgwIAMGDDjkmIPHOJT6+vrU19e/5/cPAFBLfeJ7ALu7u7N3796MHz8+xx9/fNasWVPdt3nz5mzZsiXNzc1Jkubm5mzYsKHH3bqrV69OQ0NDxowZUx3z1mMcHHPwGHV1dRk/fnyPMd3d3VmzZk11DADAsarXrwDOnz8/V155ZUaNGpXXXnsty5cvz1NPPZVVq1alsbExM2fOTFtbW4YMGZKGhobMnj07zc3NmTx5cpLk8ssvz5gxY/K5z30uixcvTkdHR26//fa0trZWr87ddNNNWbJkSW699dbccMMNefLJJ/PQQw9lxYoV1Xm0tbVlxowZmTBhQiZOnJi77roru3fvzvXXX9/bSwIA0Kt6PQB37NiRz3/+83n11VfT2NiYsWPHZtWqVfmrv/qrJMm3v/3t9O/fP9OmTcvevXvT0tKSe++9t/r8AQMG5PHHH8/NN9+c5ubmnHTSSZkxY0a+/vWvV8eMHj06K1asyNy5c3P33XdnxIgRuf/++9PS0lIdM3369OzcuTMLFixIR0dHLrzwwqxcufJtN4YAABxr+sT3AB6tfA8gABx9fA9gH/kMIAAAvUcAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAU5rhaT4BjgH9DGACOKq4AAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAUptcDcNGiRbn44oszaNCgDB06NFdddVU2b97cY8yePXvS2tqaU089NSeffHKmTZuW7du39xizZcuWTJ06NSeeeGKGDh2aW265JW+++WaPMU899VQuuuii1NfX5+yzz86yZcveNp977rknZ511VgYOHJhJkyblueeeO0LvHACgb+j1AFy7dm1aW1vzk5/8JKtXr87+/ftz+eWXZ/fu3dUxc+fOzWOPPZaHH344a9euzbZt23L11VdX9x84cCBTp07Nvn378swzz+R73/teli1blgULFlTHvPLKK5k6dWouvfTSrF+/PnPmzMkXv/jFrFq1qjrmwQcfTFtbWxYuXJgXX3wx48aNS0tLS3bs2NGLKwIA0Lv6VSqVSi0nsHPnzgwdOjRr167NJZdcks7Ozpx++ulZvnx5rrnmmiTJpk2bct5556W9vT2TJ0/OE088kU9+8pPZtm1bhg0bliRZunRp5s2bl507d6auri7z5s3LihUrsnHjxuprXXvttdm1a1dWrlyZJJk0aVIuvvjiLFmyJEnS3d2dkSNHZvbs2bntttv+6Ny7urrS2NiYzs7ONDQ0vP+Lc0fjYfZ1Hv3PA4AaOOK/v48CNf8MYGfn/wbCkCFDkiTr1q3L/v37M2XKlOqYc889N6NGjUp7e3uSpL29PRdccEE1/pKkpaUlXV1deemll6pj3nqMg2MOHmPfvn1Zt25djzH9+/fPlClTqmMAAI5Fx9Xyxbu7uzNnzpx85CMfyfnnn58k6ejoSF1dXQYPHtxj7LBhw9LR0VEd89b4O7j/4L7Djenq6sobb7yR3/72tzlw4MAhx2zatOmQ8927d2/27t1b/bmrq+s9vHsAgNqo6RXA1tbWbNy4MQ888EAtp/EnW7RoURobG6uPkSNH1npKAADvWM0CcNasWXn88cfz4x//OCNGjKhub2pqyr59+7Jr164e47dv356mpqbqmD+8K/jgz39sTENDQ0444YScdtppGTBgwCHHHDzGH5o/f346Ozurj61bt76nNQAAqIVeD8BKpZJZs2blkUceyZNPPpnRo0f32D9+/Pgcf/zxWbNmTXXb5s2bs2XLljQ3NydJmpubs2HDhh53665evToNDQ0ZM2ZMdcxbj3FwzMFj1NXVZfz48T3GdHd3Z82aNdUxf6i+vj4NDQ09HgAAR5te/wxga2trli9fnh/+8IcZNGhQ9TN7jY2NOeGEE9LY2JiZM2emra0tQ4YMSUNDQ2bPnp3m5uZMnjw5SXL55ZdnzJgx+dznPpfFixeno6Mjt99+e1pbW1NfX58kuemmm7JkyZLceuutueGGG/Lkk0/moYceyooVK6pzaWtry4wZMzJhwoRMnDgxd911V3bv3p3rr7++t5cFAKDX9HoA3nfffUmSj33sYz22f/e7380XvvCFJMm3v/3t9O/fP9OmTcvevXvT0tKSe++9tzp2wIABefzxx3PzzTenubk5J510UmbMmJGvf/3r1TGjR4/OihUrMnfu3Nx9990ZMWJE7r///rS0tFTHTJ8+PTt37syCBQvS0dGRCy+8MCtXrnzbjSEAAMeSmn8P4NHM9wC+x+cBQA34HsA+8D2AAAD0LgEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUJjjaj0BCnZH42H2dfbmTACgKK4AAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFKbXA/Dpp5/Opz71qQwfPjz9+vXLo48+2mN/pVLJggULcsYZZ+SEE07IlClT8vOf/7zHmN/85je57rrr0tDQkMGDB2fmzJl5/fXXe4z56U9/mo9+9KMZOHBgRo4cmcWLF79tLg8//HDOPffcDBw4MBdccEH+4z/+4wi9awCAvqPXA3D37t0ZN25c7rnnnkPuX7x4cb7zne9k6dKlefbZZ3PSSSelpaUle/bsqY657rrr8tJLL2X16tV5/PHH8/TTT+dLX/pSdX9XV1cuv/zynHnmmVm3bl2+9a1v5Y477sg///M/V8c888wz+cxnPpOZM2fmv//7v3PVVVflqquuysaNG4/wCgAA1Fa/SqVSqdmL9+uXRx55JFdddVXy+6t/w4cPz9/+7d/mK1/5SpKks7Mzw4YNy7Jly3LttdfmZz/7WcaMGZPnn38+EyZMSJKsXLkyn/jEJ/LLX/4yw4cPz3333Ze/+7u/S0dHR+rq6pIkt912Wx599NFs2rQpSTJ9+vTs3r07jz/+eHU+kydPzoUXXpilS5f+SfPv6upKY2NjOjs709DQ8L6vT+5oPMy+znKfBwDvwRH//X0U6FOfAXzllVfS0dGRKVOmVLc1NjZm0qRJaW9vT5K0t7dn8ODB1fhLkilTpqR///559tlnq2MuueSSavwlSUtLSzZv3pzf/va31TFvfZ2DYw6+DgDAseq4Wk/grTo6OpIkw4YN67F92LBh1X0dHR0ZOnRoj/3HHXdchgwZ0mPM6NGj33aMg/tOOeWUdHR0HPZ1DmXv3r3Zu3dv9eeurq53+U4BAGqnT10B7OsWLVqUxsbG6mPkyJG1nhIAwDvWpwKwqakpSbJ9+/Ye27dv317d19TUlB07dvTY/+abb+Y3v/lNjzGHOsZbX+P/GnNw/6HMnz8/nZ2d1cfWrVvfw7sFAKiNPhWAo0ePTlNTU9asWVPd1tXVlWeffTbNzc1Jkubm5uzatSvr1q2rjnnyySfT3d2dSZMmVcc8/fTT2b9/f3XM6tWrc8455+SUU06pjnnr6xwcc/B1DqW+vj4NDQ09HgAAR5teD8DXX38969evz/r165Pf3/ixfv36bNmyJf369cucOXPyjW98I//+7/+eDRs25POf/3yGDx9evVP4vPPOyxVXXJEbb7wxzz33XP7rv/4rs2bNyrXXXpvhw4cnST772c+mrq4uM2fOzEsvvZQHH3wwd999d9ra2qrz+PKXv5yVK1fm7//+77Np06bccccdeeGFFzJr1qzeXhIAgF7V6zeBvPDCC7n00kurPx+MshkzZmTZsmW59dZbs3v37nzpS1/Krl278pd/+ZdZuXJlBg4cWH3O97///cyaNSuXXXZZ+vfvn2nTpuU73/lOdX9jY2N+9KMfpbW1NePHj89pp52WBQsW9PiuwL/4i7/I8uXLc/vtt+erX/1qPvzhD+fRRx/N+eef32trAQBQCzX9HsCjne8BrNHzAOA98D2AfewzgAAAHHkCEACgMAIQAKAwAhAAoDACEACgMH3q3wKG98ydxQDwR7kCCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQmONqPQE4qt3ReJh9nb05EwD4k7kCCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBhfAwO14OtjAKghVwABAAojAAEACuNPwHA08adjAN4HrgACABTGFUDg3V9Z7O0rksfCFdCjZa1Ldyys97HwHjhiBCDQ+46FcDxafrn2teDs7fkcLf87Hc6x8P+XvvR6JAIQAN5HJcdMye/9KOQzgAAAhRGAAACFEYAAAIURgAAAhRGAAACFcRcwxN1rAJTFFUAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIUH4D33HNPzjrrrAwcODCTJk3Kc889V+spAQAcUUUH4IMPPpi2trYsXLgwL774YsaNG5eWlpbs2LGj1lMDADhiig7Af/iHf8iNN96Y66+/PmPGjMnSpUtz4okn5l/+5V9qPTUAgCPmuFpPoFb27duXdevWZf78+dVt/fv3z5QpU9Le3n7I5+zduzd79+6t/tzZ2Zkk6erqOjKT3Fv5v/cd7jWP9ecdztHyHvrSmtViPkfL8w7naHkPfWnNajGfo+V5h3O0vIe+tGZ/xMHf25XKYV77GNevUui737ZtWz7wgQ/kmWeeSXNzc3X7rbfemrVr1+bZZ59923PuuOOO3Hnnnb08UwDgSNi6dWtGjBhR62nURLFXAN+N+fPnp62trfpzd3d3fvOb3+TUU09Nv379eozt6urKyJEjs3Xr1jQ0NNRgtkcn6/bOWbN3x7q9O9bt3bFu79yRXLNKpZLXXnstw4cPf1+PezQpNgBPO+20DBgwINu3b++xffv27Wlqajrkc+rr61NfX99j2+DBgw/7Og0NDf7P/i5Yt3fOmr071u3dsW7vjnV7547UmjU2Nr7vxzyaFHsTSF1dXcaPH581a9ZUt3V3d2fNmjU9/iQMAHCsKfYKYJK0tbVlxowZmTBhQiZOnJi77roru3fvzvXXX1/rqQEAHDFFB+D06dOzc+fOLFiwIB0dHbnwwguzcuXKDBs27D0fu76+PgsXLnzbn4w5POv2zlmzd8e6vTvW7d2xbu+cNTuyir0LGACgVMV+BhAAoFQCEACgMAIQAKAwAhAAoDAC8Ai45557ctZZZ2XgwIGZNGlSnnvuuVpPqU+744470q9fvx6Pc889t9bT6nOefvrpfOpTn8rw4cPTr1+/PProoz32VyqVLFiwIGeccUZOOOGETJkyJT//+c9rNt++4o+t2xe+8IW3nX9XXHFFzebbFyxatCgXX3xxBg0alKFDh+aqq67K5s2be4zZs2dPWltbc+qpp+bkk0/OtGnT3vbF+qX5U9btYx/72NvOt5tuuqlmc+4L7rvvvowdO7b6hc/Nzc154oknqvuda0eGAHyfPfjgg2lra8vChQvz4osvZty4cWlpacmOHTtqPbU+7c///M/z6quvVh//+Z//Wesp9Tm7d+/OuHHjcs899xxy/+LFi/Od73wnS5cuzbPPPpuTTjopLS0t2bNnT6/PtS/5Y+uWJFdccUWP8+8HP/hBr86xr1m7dm1aW1vzk5/8JKtXr87+/ftz+eWXZ/fu3dUxc+fOzWOPPZaHH344a9euzbZt23L11VfXdN619qesW5LceOONPc63xYsX12zOfcGIESPyzW9+M+vWrcsLL7yQj3/84/n0pz+dl156KXGuHTkV3lcTJ06stLa2Vn8+cOBAZfjw4ZVFixbVdF592cKFCyvjxo2r9TSOKkkqjzzySPXn7u7uSlNTU+Vb3/pWdduuXbsq9fX1lR/84Ac1mmXf84frVqlUKjNmzKh8+tOfrtmcjgY7duyoJKmsXbu2Uvn9uXX88cdXHn744eqYn/3sZ5Uklfb29hrOtG/5w3WrVCqV//f//l/ly1/+ck3ndTQ45ZRTKvfff79z7QhyBfB9tG/fvqxbty5Tpkypbuvfv3+mTJmS9vb2ms6tr/v5z3+e4cOH54Mf/GCuu+66bNmypdZTOqq88sor6ejo6HHuNTY2ZtKkSc69P8FTTz2VoUOH5pxzzsnNN9+cX//617WeUp/S2dmZJBkyZEiSZN26ddm/f3+P8+3cc8/NqFGjnG9v8YfrdtD3v//9nHbaaTn//PMzf/78/O53v6vRDPueAwcO5IEHHsju3bvT3NzsXDuCiv6XQN5vv/rVr3LgwIG3/Usiw4YNy6ZNm2o2r75u0qRJWbZsWc4555y8+uqrufPOO/PRj340GzduzKBBg2o9vaNCR0dH8vtz7a2GDRtW3cehXXHFFbn66qszevTovPzyy/nqV7+aK6+8Mu3t7RkwYECtp1dz3d3dmTNnTj7ykY/k/PPPT35/vtXV1WXw4ME9xjrf/n+HWrck+exnP5szzzwzw4cPz09/+tPMmzcvmzdvzr/927/VdL61tmHDhjQ3N2fPnj05+eST88gjj2TMmDFZv369c+0IEYDU3JVXXln977Fjx2bSpEk588wz89BDD2XmzJk1nRvHvmuvvbb63xdccEHGjh2bD33oQ3nqqady2WWX1XRufUFra2s2btzoc7nv0P+1bl/60peq/33BBRfkjDPOyGWXXZaXX345H/rQh2ow077hnHPOyfr169PZ2Zl//dd/zYwZM7J27dpaT+uY5k/A76PTTjstAwYMeNvdSdu3b09TU1PN5nW0GTx4cP7sz/4sv/jFL2o9laPGwfPLuffeffCDH8xpp53m/Esya9asPP744/nxj3+cESNGVLc3NTVl37592bVrV4/xzrf/9X+t26FMmjQpSYo/3+rq6nL22Wdn/PjxWbRoUcaNG5e7777buXYECcD3UV1dXcaPH581a9ZUt3V3d2fNmjVpbm6u6dyOJq+//npefvnlnHHGGbWeylFj9OjRaWpq6nHudXV15dlnn3XuvUO//OUv8+tf/7ro869SqWTWrFl55JFH8uSTT2b06NE99o8fPz7HH398j/Nt8+bN2bJlS9Hn2x9bt0NZv359khR9vh1Kd3d39u7d61w7gvwJ+H3W1taWGTNmZMKECZk4cWLuuuuu7N69O9dff32tp9ZnfeUrX8mnPvWpnHnmmdm2bVsWLlyYAQMG5DOf+Uytp9anvP766z2uErzyyitZv359hgwZklGjRmXOnDn5xje+kQ9/+MMZPXp0vva1r2X48OG56qqrajrvWjvcug0ZMiR33nlnpk2blqamprz88su59dZbc/bZZ6elpaWm866l1tbWLF++PD/84Q8zaNCg6metGhsbc8IJJ6SxsTEzZ85MW1tbhgwZkoaGhsyePTvNzc2ZPHlyradfM39s3V5++eUsX748n/jEJ3Lqqafmpz/9aebOnZtLLrkkY8eOrfX0a2b+/Pm58sorM2rUqLz22mtZvnx5nnrqqaxatcq5diTV+jbkY9E//uM/VkaNGlWpq6urTJw4sfKTn/yk1lPq06ZPn14544wzKnV1dZUPfOADlenTp1d+8Ytf1Hpafc6Pf/zjSpK3PWbMmFGp/P6rYL72ta9Vhg0bVqmvr69cdtlllc2bN9d62jV3uHX73e9+V7n88ssrp59+euX444+vnHnmmZUbb7yx0tHRUetp19Sh1itJ5bvf/W51zBtvvFH5m7/5m8opp5xSOfHEEyt//dd/XXn11VdrOu9a+2PrtmXLlsoll1xSGTJkSKW+vr5y9tlnV2655ZZKZ2dnradeUzfccEPlzDPPrNTV1VVOP/30ymWXXVb50Y9+VN3vXDsy+lX+96QFAKAQPgMIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFCY/w8tmfmOTDaPEwAAAABJRU5ErkJggg==", - "text/html": [ - "\n", - " <div style=\"display: inline-block;\">\n", - " <div class=\"jupyter-widgets widget-label\" style=\"text-align: center;\">\n", - " Figure 2\n", - " </div>\n", - " <img src='' width=640.0/>\n", - " </div>\n", - " " - ], "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + "(array([255., 0., 298., 0., 231., 0., 210., 0., 123., 0., 63.,\n", + " 0., 31., 0., 46., 0., 39., 0., 35., 0., 40., 0.,\n", + " 35., 0., 44., 0., 24., 0., 37., 0., 26., 0., 0.,\n", + " 39., 0., 31., 0., 31., 0., 38., 0., 34., 0., 36.,\n", + " 0., 33., 0., 33., 0., 22., 0., 38., 0., 28., 0.,\n", + " 34., 0., 26., 0., 30., 0., 26., 0., 32.]),\n", + " array([ 1. , 1.484375, 1.96875 , 2.453125, 2.9375 , 3.421875,\n", + " 3.90625 , 4.390625, 4.875 , 5.359375, 5.84375 , 6.328125,\n", + " 6.8125 , 7.296875, 7.78125 , 8.265625, 8.75 , 9.234375,\n", + " 9.71875 , 10.203125, 10.6875 , 11.171875, 11.65625 , 12.140625,\n", + " 12.625 , 13.109375, 13.59375 , 14.078125, 14.5625 , 15.046875,\n", + " 15.53125 , 16.015625, 16.5 , 16.984375, 17.46875 , 17.953125,\n", + " 18.4375 , 18.921875, 19.40625 , 19.890625, 20.375 , 20.859375,\n", + " 21.34375 , 21.828125, 22.3125 , 22.796875, 23.28125 , 23.765625,\n", + " 24.25 , 24.734375, 25.21875 , 25.703125, 26.1875 , 26.671875,\n", + " 27.15625 , 27.640625, 28.125 , 28.609375, 29.09375 , 29.578125,\n", + " 30.0625 , 30.546875, 31.03125 , 31.515625, 32. ]),\n", + " <BarContainer object of 64 artists>)" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAivElEQVR4nO3df1BVdeL/8RegXH/BJVS4sAL+KpEUa0nxTuXHFVZE1tWVZrTcstbR0YVmlTKlMTV3Z3Gt6eeQzs62UjOS5U7qSGUpJm4ralKOv4pRhxZbvNDqwFWMH8L5/vHJ+/3c/EEocN/A8zFzZrjnvO+973M85dNzf+BnWZYlAAAAg/j7egIAAAA/RqAAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAME4PX0/gVjQ3N6uiokJBQUHy8/Pz9XQAAMBPYFmWLl68qMjISPn73/waSacMlIqKCkVFRfl6GgAA4BacPXtWgwYNuumYThkoQUFB0g87GBwc7OvpAACAn8DtdisqKsrz9/jNdMpAufqyTnBwMIECAEAn81PensGbZAEAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGaVWgrF+/XvHx8Z4vSHM6nfroo4882+vq6pSRkaH+/furX79+Sk9PV2VlpddjlJeXKy0tTX369FFYWJiWLl2qK1eutN0eAQCATq9VgTJo0CCtXbtWJSUlOnz4sCZNmqTp06frxIkTkqQlS5Zox44d2rJli4qKilRRUaGZM2d67t/U1KS0tDQ1NDRo//79euutt5SXl6eVK1e2/Z4BAIBOy8+yLOt2HiA0NFQvvPCCHnroIQ0cOFD5+fl66KGHJElff/21Ro4cqeLiYo0fP14fffSRfvWrX6miokLh4eGSpA0bNmjZsmX67rvvFBgY+JOe0+12y263q6amhq+6BwCgk2jN39+3/B6UpqYmbd68WbW1tXI6nSopKVFjY6OSk5M9Y2JjYxUdHa3i4mJJUnFxsUaPHu2JE0lKSUmR2+32XIW5nvr6erndbq8FAAB0Xa0OlGPHjqlfv36y2WxauHChtm7dqri4OLlcLgUGBiokJMRrfHh4uFwulyTJ5XJ5xcnV7Ve33UhOTo7sdrtniYqKau20AQBAJ9LqQBkxYoSOHDmigwcPatGiRZo7d65OnjzZPrP7QXZ2tmpqajzL2bNn2/X5AACAb/Vo7R0CAwM1fPhwSVJCQoI+//xzvfrqq5o1a5YaGhpUXV3tdRWlsrJSDodDkuRwOHTo0CGvx7v6KZ+rY67HZrPJZrO1dqodbvDyD2647Zu1aR06FwAAOrPb/h6U5uZm1dfXKyEhQT179lRhYaFnW2lpqcrLy+V0OiVJTqdTx44dU1VVlWfMrl27FBwcrLi4uNudCgAA6CJadQUlOztbqampio6O1sWLF5Wfn6+9e/fq448/lt1u17x585SVlaXQ0FAFBwfrySeflNPp1Pjx4yVJkydPVlxcnB599FGtW7dOLpdLK1asUEZGRqe4QgIAADpGqwKlqqpKjz32mM6dOye73a74+Hh9/PHH+uUvfylJevnll+Xv76/09HTV19crJSVFb7zxhuf+AQEBKigo0KJFi+R0OtW3b1/NnTtXa9asafs9AwAAndZtfw+KL5j6PSi8BwUAgBvrkO9BAQAAaC8ECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADBOD19PwESDl39ww23frE3r0LkAANAdcQUFAAAYp1WBkpOTo7FjxyooKEhhYWGaMWOGSktLvcZMnDhRfn5+XsvChQu9xpSXlystLU19+vRRWFiYli5dqitXrrTNHgEAgE6vVS/xFBUVKSMjQ2PHjtWVK1f07LPPavLkyTp58qT69u3rGTd//nytWbPGc7tPnz6en5uampSWliaHw6H9+/fr3Llzeuyxx9SzZ0/9+c9/bqv9AgAAnVirAmXnzp1et/Py8hQWFqaSkhJNmDDBs75Pnz5yOBzXfYxPPvlEJ0+e1O7duxUeHq577rlHf/zjH7Vs2TKtXr1agYGBt7ovAACgi7it96DU1NRIkkJDQ73Wb9q0SQMGDNCoUaOUnZ2ty5cve7YVFxdr9OjRCg8P96xLSUmR2+3WiRMnrvs89fX1crvdXgsAAOi6bvlTPM3NzVq8eLHuv/9+jRo1yrP+kUceUUxMjCIjI3X06FEtW7ZMpaWlev/99yVJLpfLK04keW67XK7rPldOTo6ef/75W50qAADoZG45UDIyMnT8+HF99tlnXusXLFjg+Xn06NGKiIhQUlKSzpw5o2HDht3Sc2VnZysrK8tz2+12Kyoq6lanDgAADHdLL/FkZmaqoKBAn376qQYNGnTTsYmJiZKk06dPS5IcDocqKyu9xly9faP3rdhsNgUHB3stAACg62pVoFiWpczMTG3dulV79uzRkCFDWrzPkSNHJEkRERGSJKfTqWPHjqmqqsozZteuXQoODlZcXFzr9wAAAHQ5rXqJJyMjQ/n5+dq+fbuCgoI87xmx2+3q3bu3zpw5o/z8fE2dOlX9+/fX0aNHtWTJEk2YMEHx8fGSpMmTJysuLk6PPvqo1q1bJ5fLpRUrVigjI0M2m6199hIAAHQqrbqCsn79etXU1GjixImKiIjwLO+++64kKTAwULt379bkyZMVGxurp556Sunp6dqxY4fnMQICAlRQUKCAgAA5nU799re/1WOPPeb1vSkAAKB7a9UVFMuybro9KipKRUVFLT5OTEyMPvzww9Y8NQAA6Eb4XTwAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIzTw9cTgDR4+Qc33PbN2rQOnQsAACbgCgoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4PXw9Ady6wcs/uOG2b9amdehcAABoS1xBAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGCcVgVKTk6Oxo4dq6CgIIWFhWnGjBkqLS31GlNXV6eMjAz1799f/fr1U3p6uiorK73GlJeXKy0tTX369FFYWJiWLl2qK1eutM0eAQCATq9VgVJUVKSMjAwdOHBAu3btUmNjoyZPnqza2lrPmCVLlmjHjh3asmWLioqKVFFRoZkzZ3q2NzU1KS0tTQ0NDdq/f7/eeust5eXlaeXKlW27ZwAAoNNq1TfJ7ty50+t2Xl6ewsLCVFJSogkTJqimpkZvvvmm8vPzNWnSJEnSxo0bNXLkSB04cEDjx4/XJ598opMnT2r37t0KDw/XPffcoz/+8Y9atmyZVq9ercDAwLbdQwAA0Onc1ntQampqJEmhoaGSpJKSEjU2Nio5OdkzJjY2VtHR0SouLpYkFRcXa/To0QoPD/eMSUlJkdvt1okTJ677PPX19XK73V4LAADoum45UJqbm7V48WLdf//9GjVqlCTJ5XIpMDBQISEhXmPDw8Plcrk8Y/5vnFzdfnXb9eTk5Mhut3uWqKioW502AADoBG45UDIyMnT8+HFt3ry5bWd0HdnZ2aqpqfEsZ8+ebffnBAAAvnNLv804MzNTBQUF2rdvnwYNGuRZ73A41NDQoOrqaq+rKJWVlXI4HJ4xhw4d8nq8q5/yuTrmx2w2m2w2261MFQAAdEKtuoJiWZYyMzO1detW7dmzR0OGDPHanpCQoJ49e6qwsNCzrrS0VOXl5XI6nZIkp9OpY8eOqaqqyjNm165dCg4OVlxc3O3vEQAA6PRadQUlIyND+fn52r59u4KCgjzvGbHb7erdu7fsdrvmzZunrKwshYaGKjg4WE8++aScTqfGjx8vSZo8ebLi4uL06KOPat26dXK5XFqxYoUyMjK4SgIAAKTWBsr69eslSRMnTvRav3HjRj3++OOSpJdffln+/v5KT09XfX29UlJS9MYbb3jGBgQEqKCgQIsWLZLT6VTfvn01d+5crVmzpm32CAAAdHqtChTLsloc06tXL+Xm5io3N/eGY2JiYvThhx+25qkBAEA3wu/iAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGKfVgbJv3z5NmzZNkZGR8vPz07Zt27y2P/744/Lz8/NapkyZ4jXmwoULmjNnjoKDgxUSEqJ58+bp0qVLt783AACgS2h1oNTW1mrMmDHKzc294ZgpU6bo3LlznuWdd97x2j5nzhydOHFCu3btUkFBgfbt26cFCxbc2h4AAIAup0dr75CamqrU1NSbjrHZbHI4HNfd9tVXX2nnzp36/PPPdd9990mSXn/9dU2dOlUvvviiIiMjWzslAADQxbTLe1D27t2rsLAwjRgxQosWLdL58+c924qLixUSEuKJE0lKTk6Wv7+/Dh48eN3Hq6+vl9vt9loAAEDX1eaBMmXKFL399tsqLCzUX/7yFxUVFSk1NVVNTU2SJJfLpbCwMK/79OjRQ6GhoXK5XNd9zJycHNntds8SFRXV1tMGAAAGafVLPC2ZPXu25+fRo0crPj5ew4YN0969e5WUlHRLj5mdna2srCzPbbfbTaQAANCFtfvHjIcOHaoBAwbo9OnTkiSHw6GqqiqvMVeuXNGFCxdu+L4Vm82m4OBgrwUAAHRd7R4o3377rc6fP6+IiAhJktPpVHV1tUpKSjxj9uzZo+bmZiUmJrb3dAAAQCfQ6pd4Ll265LkaIkllZWU6cuSIQkNDFRoaqueff17p6elyOBw6c+aMnnnmGQ0fPlwpKSmSpJEjR2rKlCmaP3++NmzYoMbGRmVmZmr27Nl8ggcAAEi3cgXl8OHDuvfee3XvvfdKkrKysnTvvfdq5cqVCggI0NGjR/XrX/9ad911l+bNm6eEhAT985//lM1m8zzGpk2bFBsbq6SkJE2dOlUPPPCA/vrXv7btngEAgE6r1VdQJk6cKMuybrj9448/bvExQkNDlZ+f39qnBgAA3QS/iwcAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABinh68ngI43ePkHN9z2zdq0Dp0LAADXwxUUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGKfVgbJv3z5NmzZNkZGR8vPz07Zt27y2W5allStXKiIiQr1791ZycrJOnTrlNebChQuaM2eOgoODFRISonnz5unSpUu3vzcAAKBLaHWg1NbWasyYMcrNzb3u9nXr1um1117Thg0bdPDgQfXt21cpKSmqq6vzjJkzZ45OnDihXbt2qaCgQPv27dOCBQtub08AAECX0aO1d0hNTVVqaup1t1mWpVdeeUUrVqzQ9OnTJUlvv/22wsPDtW3bNs2ePVtfffWVdu7cqc8//1z33XefJOn111/X1KlT9eKLLyoyMvJ29wkAAHRybfoelLKyMrlcLiUnJ3vW2e12JSYmqri4WJJUXFyskJAQT5xIUnJysvz9/XXw4MHrPm59fb3cbrfXAgAAuq42DRSXyyVJCg8P91ofHh7u2eZyuRQWFua1vUePHgoNDfWM+bGcnBzZ7XbPEhUV1ZbTBgAAhukUn+LJzs5WTU2NZzl79qyvpwQAANpRmwaKw+GQJFVWVnqtr6ys9GxzOByqqqry2n7lyhVduHDBM+bHbDabgoODvRYAANB1tWmgDBkyRA6HQ4WFhZ51brdbBw8elNPplCQ5nU5VV1erpKTEM2bPnj1qbm5WYmJiW04HAAB0Uq3+FM+lS5d0+vRpz+2ysjIdOXJEoaGhio6O1uLFi/WnP/1Jd955p4YMGaLnnntOkZGRmjFjhiRp5MiRmjJliubPn68NGzaosbFRmZmZmj17Np/gAQAA0q0EyuHDh/WLX/zCczsrK0uSNHfuXOXl5emZZ55RbW2tFixYoOrqaj3wwAPauXOnevXq5bnPpk2blJmZqaSkJPn7+ys9PV2vvfZaW+0TAADo5FodKBMnTpRlWTfc7ufnpzVr1mjNmjU3HBMaGqr8/PzWPjUAAOgmOsWneAAAQPdCoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIzTw9cTQOcxePkHN9z2zdq0Dp0LAKBr4woKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjNPmgbJ69Wr5+fl5LbGxsZ7tdXV1ysjIUP/+/dWvXz+lp6ersrKyracBAAA6sXa5gnL33Xfr3LlznuWzzz7zbFuyZIl27NihLVu2qKioSBUVFZo5c2Z7TAMAAHRS7fLLAnv06CGHw3HN+pqaGr355pvKz8/XpEmTJEkbN27UyJEjdeDAAY0fP749pgMAADqZdrmCcurUKUVGRmro0KGaM2eOysvLJUklJSVqbGxUcnKyZ2xsbKyio6NVXFx8w8err6+X2+32WgAAQNfV5oGSmJiovLw87dy5U+vXr1dZWZkefPBBXbx4US6XS4GBgQoJCfG6T3h4uFwu1w0fMycnR3a73bNERUW19bQBAIBB2vwlntTUVM/P8fHxSkxMVExMjN577z317t37lh4zOztbWVlZnttut5tIAQCgC2v3jxmHhITorrvu0unTp+VwONTQ0KDq6mqvMZWVldd9z8pVNptNwcHBXgsAAOi62j1QLl26pDNnzigiIkIJCQnq2bOnCgsLPdtLS0tVXl4up9PZ3lMBAACdRJu/xPP0009r2rRpiomJUUVFhVatWqWAgAA9/PDDstvtmjdvnrKyshQaGqrg4GA9+eSTcjqdfIIHAAB4tHmgfPvtt3r44Yd1/vx5DRw4UA888IAOHDiggQMHSpJefvll+fv7Kz09XfX19UpJSdEbb7zR1tNAFzB4+Qc33PbN2rQOnQsAoGO1eaBs3rz5ptt79eql3Nxc5ebmtvVTAwCALqJdvqgNQPvi6hKAro5fFggAAIxDoAAAAOMQKAAAwDgECgAAMA5vkgXaAG9aBYC2RaCgyyEWujb+fIHugUABgHZASLU9jmn3wntQAACAcbiCAqBF/MsVQEcjUACgiyAk0ZUQKMAPbvY/d7XT/+D5CwUAro9AAQDDEK5m4M/BtwgUAOjmbvUvYv4CR3siUAAA6KZMjkw+ZgwAAIzDFRS0O5MLHd0HL2MAnQuBAgCAAYhhb7zEAwAAjMMVFABAl8aVic6JKygAAMA4BAoAADAOL/EAaDdcWkd31NHnfVf974wrKAAAwDhcQQG6ka76Ly0AXQ9XUAAAgHG4ggIA6FBcycNPwRUUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYByfBkpubq4GDx6sXr16KTExUYcOHfLldAAAgCF8FijvvvuusrKytGrVKn3xxRcaM2aMUlJSVFVV5aspAQAAQ/gsUF566SXNnz9fTzzxhOLi4rRhwwb16dNHf//73301JQAAYIgevnjShoYGlZSUKDs727PO399fycnJKi4uvmZ8fX296uvrPbdramokSW63u13m11x/+Ybbbvac3K/r3s8Xz9md73cznWUfbmffO8tcuV/nvt/t3vdWXH1My7JaHmz5wH/+8x9LkrV//36v9UuXLrXGjRt3zfhVq1ZZklhYWFhYWFi6wHL27NkWW8EnV1BaKzs7W1lZWZ7bzc3NunDhgvr37y8/P79rxrvdbkVFRens2bMKDg7u4Nl2DhyjlnGMbo7j0zKOUcs4RjfX1Y6PZVm6ePGiIiMjWxzrk0AZMGCAAgICVFlZ6bW+srJSDofjmvE2m002m81rXUhISIvPExwc3CX+QNsTx6hlHKOb4/i0jGPUMo7RzXWl42O323/SOJ+8STYwMFAJCQkqLCz0rGtublZhYaGcTqcvpgQAAAzis5d4srKyNHfuXN13330aN26cXnnlFdXW1uqJJ57w1ZQAAIAhfBYos2bN0nfffaeVK1fK5XLpnnvu0c6dOxUeHn7bj22z2bRq1aprXhbC/8cxahnH6OY4Pi3jGLWMY3Rz3fn4+Fk/6bM+AAAAHYffxQMAAIxDoAAAAOMQKAAAwDgECgAAME6XDJTc3FwNHjxYvXr1UmJiog4dOuTrKRlj9erV8vPz81piY2N9PS2f2bdvn6ZNm6bIyEj5+flp27ZtXtsty9LKlSsVERGh3r17Kzk5WadOnfLZfH2hpWP0+OOPX3NOTZkyxWfz7Wg5OTkaO3asgoKCFBYWphkzZqi0tNRrTF1dnTIyMtS/f3/169dP6enp13xRZVf2U47RxIkTrzmPFi5c6LM5d7T169crPj7e84VsTqdTH330kWd7dzyHulygvPvuu8rKytKqVav0xRdfaMyYMUpJSVFVVZWvp2aMu+++W+fOnfMsn332ma+n5DO1tbUaM2aMcnNzr7t93bp1eu2117RhwwYdPHhQffv2VUpKiurq6jp8rr7S0jGSpClTpnidU++8806HztGXioqKlJGRoQMHDmjXrl1qbGzU5MmTVVtb6xmzZMkS7dixQ1u2bFFRUZEqKio0c+ZMn867I/2UYyRJ8+fP9zqP1q1b57M5d7RBgwZp7dq1Kikp0eHDhzVp0iRNnz5dJ06ckLrrOdSWvwTQBOPGjbMyMjI8t5uamqzIyEgrJyfHp/MyxapVq6wxY8b4ehpGkmRt3brVc7u5udlyOBzWCy+84FlXXV1t2Ww265133vHRLH3rx8fIsixr7ty51vTp0302J9NUVVVZkqyioiLL+uGc6dmzp7VlyxbPmK+++sqSZBUXF/twpr7z42NkWZb1P//zP9Yf/vAHn87LNHfccYf1t7/9rdueQ13qCkpDQ4NKSkqUnJzsWefv76/k5GQVFxf7dG4mOXXqlCIjIzV06FDNmTNH5eXlvp6SkcrKyuRyubzOJ7vdrsTERM6nH9m7d6/CwsI0YsQILVq0SOfPn/f1lHympqZGkhQaGipJKikpUWNjo9d5FBsbq+jo6G57Hv34GF21adMmDRgwQKNGjVJ2drYuX77soxn6VlNTkzZv3qza2lo5nc5uew51it9m/FP997//VVNT0zXfRhseHq6vv/7aZ/MySWJiovLy8jRixAidO3dOzz//vB588EEdP35cQUFBvp6eUVwul/TD+fN/hYeHe7bhf1/emTlzpoYMGaIzZ87o2WefVWpqqoqLixUQEODr6XWo5uZmLV68WPfff79GjRol/XAeBQYGXvMLTrvreXS9YyRJjzzyiGJiYhQZGamjR49q2bJlKi0t1fvvv+/T+XakY8eOyel0qq6uTv369dPWrVsVFxenI0eOdMtzqEsFClqWmprq+Tk+Pl6JiYmKiYnRe++9p3nz5vl0buicZs+e7fl59OjRio+P17Bhw7R3714lJSX5dG4dLSMjQ8ePH+/W7+tqyY2O0YIFCzw/jx49WhEREUpKStKZM2c0bNgwH8y0440YMUJHjhxRTU2N/vGPf2ju3LkqKiry9bR8pku9xDNgwAAFBARc887myspKORwOn83LZCEhIbrrrrt0+vRpX0/FOFfPGc6n1hk6dKgGDBjQ7c6pzMxMFRQU6NNPP9WgQYM86x0OhxoaGlRdXe01vjueRzc6RteTmJgoSd3qPAoMDNTw4cOVkJCgnJwcjRkzRq+++mq3PYe6VKAEBgYqISFBhYWFnnXNzc0qLCyU0+n06dxMdenSJZ05c0YRERG+nopxhgwZIofD4XU+ud1uHTx4kPPpJr799ludP3++25xTlmUpMzNTW7du1Z49ezRkyBCv7QkJCerZs6fXeVRaWqry8vJucx61dIyu58iRI5LUbc6j62lublZ9fX33PYd8/S7dtrZ582bLZrNZeXl51smTJ60FCxZYISEhlsvl8vXUjPDUU09Ze/futcrKyqx//etfVnJysjVgwACrqqrK11PziYsXL1pffvml9eWXX1qSrJdeesn68ssvrX//+9+WZVnW2rVrrZCQEGv79u3W0aNHrenTp1tDhgyxvv/+e19PvcPc7BhdvHjRevrpp63i4mKrrKzM2r17t/Xzn//cuvPOO626ujpfT71DLFq0yLLb7dbevXutc+fOeZbLly97xixcuNCKjo629uzZYx0+fNhyOp2W0+n06bw7UkvH6PTp09aaNWusw4cPW2VlZdb27dutoUOHWhMmTPD11DvM8uXLraKiIqusrMw6evSotXz5csvPz8/65JNPLKubnkNdLlAsy7Jef/11Kzo62goMDLTGjRtnHThwwNdTMsasWbOsiIgIKzAw0PrZz35mzZo1yzp9+rSvp+Uzn376qSXpmmXu3LmW9cNHjZ977jkrPDzcstlsVlJSklVaWurraXeomx2jy5cvW5MnT7YGDhxo9ezZ04qJibHmz5/frf5BcL1jI8nauHGjZ8z3339v/f73v7fuuOMOq0+fPtZvfvMb69y5cz6dd0dq6RiVl5dbEyZMsEJDQy2bzWYNHz7cWrp0qVVTU+PrqXeY3/3ud1ZMTIwVGBhoDRw40EpKSvLEidVNzyE/639PHgAAAGN0qfegAACAroFAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYJz/B1g6lyYuVsaFAAAAAElFTkSuQmCC", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" ] }, "metadata": {}, @@ -284,37 +243,48 @@ } ], "source": [ - "with plt.ioff():\n", - " plt.hist(data['labels'],bins=64)\n", - " plt.show()" + "plt.hist(mkbatch(2048)[1].cpu(), bins=64)" ] }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 42, "execution_state": "idle", "metadata": {}, "outputs": [ { "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "24b2976d050e43af8bad0e4080a224eb", - "version_major": 2, - "version_minor": 0 - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAjcElEQVR4nO3dfZTWdZ3/8dcAcRMxg1DMOCsgtW6IN2Xi0mg3W7KSsZ48cSp2J5eUI3vaoUTSgkrKvAHZXTOKID0ucE66VrurFRVKWLIlIlK03oW2WVDuwO4hZoSOgzLX749fXqcx/W2/1rkuxs/jcc51Ttf3+7nm+/4QytPvXHPRUKlUKgEAoBiD6j0AAAC1JQABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAozpN4DDGS9vb15/PHHM2rUqDQ0NNR7HADg91CpVPLEE0+ktbU1gwaVeS9MAP4vPP744xk/fny9xwAA/gC7d+/OMcccU+8x6kIA/i+MGjUq+c1voMbGxnqPAwD8Hrq7uzN+/Pjqn+MlEoD/C89827exsVEAAsAAU/Lbt8r8xjcAQMEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYYbUewCe37GLvvG85362bGZNZwEAXjzcAQQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAozBEZgJs3b84555yT1tbWNDQ05LbbbutzvlKpZMmSJTn66KMzYsSITJ8+PY8++mifNfv27Ut7e3saGxszevTozJ07NwcOHOiz5t///d/zxje+McOHD8/48eOzfPnymuwPAKCejsgAPHjwYF7zmtdk5cqVz3l++fLlWbFiRVavXp2tW7dm5MiRmTFjRp588snqmvb29jz44IPZuHFj1q9fn82bN2fevHnV893d3TnrrLMyceLEbN++PX/3d3+XT37yk7n++utrskcAgHppqFQqlXoP8f/S0NCQW2+9Neeee27ym7t/ra2t+dCHPpRLLrkkSdLV1ZXm5uasXbs2s2fPzsMPP5wpU6Zk27ZtmTp1apJkw4YNefvb355f/OIXaW1tzapVq/Kxj30snZ2dGTp0aJJk0aJFue222/LjH//495qtu7s7TU1N6erqSmNj4wu+92MXfeN5z/1s2cwX/HoAUIL+/vN7IDgi7wD+vzz22GPp7OzM9OnTq8eampoybdq0bNmyJUmyZcuWjB49uhp/STJ9+vQMGjQoW7dura5505veVI2/JJkxY0Z27tyZX/3qV8957Z6ennR3d/d5AAAMNAMuADs7O5Mkzc3NfY43NzdXz3V2dmbcuHF9zg8ZMiRjxozps+a5vsZvX+PZli5dmqampupj/PjxL+DOAABqY8AFYD0tXrw4XV1d1cfu3bvrPRIAwP+3AReALS0tSZI9e/b0Ob5nz57quZaWluzdu7fP+aeffjr79u3rs+a5vsZvX+PZhg0blsbGxj4PAICBZsAF4KRJk9LS0pJNmzZVj3V3d2fr1q1pa2tLkrS1tWX//v3Zvn17dc2dd96Z3t7eTJs2rbpm8+bNeeqpp6prNm7cmFe/+tU56qijaronAIBaOiID8MCBA9mxY0d27NiR/OYHP3bs2JFdu3aloaEhCxYsyJVXXpmvfe1ruf/++/PXf/3XaW1trf6k8PHHH5+3ve1tufDCC3Pvvffm+9//fubPn5/Zs2entbU1SfJXf/VXGTp0aObOnZsHH3wwX/rSl/KZz3wmCxcurOveAQD625B6D/Bc7rvvvrzlLW+pPn8myubMmZO1a9fmwx/+cA4ePJh58+Zl//79ecMb3pANGzZk+PDh1dfcdNNNmT9/fs4888wMGjQos2bNyooVK6rnm5qacscdd6SjoyOnnnpqXv7yl2fJkiV9PisQAODF6Ij/HMAjmc8BBICBx+cAHqHfAgYAoP8IQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCDMgAPHz4cC677LJMmjQpI0aMyKte9apcccUVqVQq1TWVSiVLlizJ0UcfnREjRmT69Ol59NFH+3ydffv2pb29PY2NjRk9enTmzp2bAwcO1GFHAAC1MyAD8JprrsmqVavyuc99Lg8//HCuueaaLF++PJ/97Gera5YvX54VK1Zk9erV2bp1a0aOHJkZM2bkySefrK5pb2/Pgw8+mI0bN2b9+vXZvHlz5s2bV6ddAQDURkPlt2+bDRB/8Rd/kebm5tx4443VY7NmzcqIESPyxS9+MZVKJa2trfnQhz6USy65JEnS1dWV5ubmrF27NrNnz87DDz+cKVOmZNu2bZk6dWqSZMOGDXn729+eX/ziF2ltbf0f5+ju7k5TU1O6urrS2Nj4gu/z2EXfeN5zP1s28wW/HgCUoL///B4IBuQdwNNPPz2bNm3KI488kiT50Y9+lO9973s5++yzkySPPfZYOjs7M3369OprmpqaMm3atGzZsiVJsmXLlowePboaf0kyffr0DBo0KFu3bq35ngAAamVIvQf4QyxatCjd3d2ZPHlyBg8enMOHD+eqq65Ke3t7kqSzszNJ0tzc3Od1zc3N1XOdnZ0ZN25cn/NDhgzJmDFjqmueraenJz09PdXn3d3dL/jeAAD624C8A/jlL385N910U26++eb84Ac/yLp16/L3f//3WbduXb9ed+nSpWlqaqo+xo8f36/XAwDoDwMyAC+99NIsWrQos2fPzkknnZTzzjsvF198cZYuXZokaWlpSZLs2bOnz+v27NlTPdfS0pK9e/f2Of/0009n37591TXPtnjx4nR1dVUfu3fv7qcdAgD0nwEZgL/+9a8zaFDf0QcPHpze3t4kyaRJk9LS0pJNmzZVz3d3d2fr1q1pa2tLkrS1tWX//v3Zvn17dc2dd96Z3t7eTJs27TmvO2zYsDQ2NvZ5AAAMNAPyPYDnnHNOrrrqqkyYMCEnnHBCfvjDH+baa6/NBRdckCRpaGjIggULcuWVV+a4447LpEmTctlll6W1tTXnnntukuT444/P2972tlx44YVZvXp1nnrqqcyfPz+zZ8/+vX4CGABgoBqQAfjZz342l112Wf72b/82e/fuTWtra/7mb/4mS5Ysqa758Ic/nIMHD2bevHnZv39/3vCGN2TDhg0ZPnx4dc1NN92U+fPn58wzz8ygQYMya9asrFixok67AgCojQH5OYBHCp8DCAADj88BHKDvAQQA4A8nAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAozYAPwl7/8Zd773vdm7NixGTFiRE466aTcd9991fOVSiVLlizJ0UcfnREjRmT69Ol59NFH+3yNffv2pb29PY2NjRk9enTmzp2bAwcO1GE3AAC1MyAD8Fe/+lXOOOOMvOQlL8m3vvWtPPTQQ/mHf/iHHHXUUdU1y5cvz4oVK7J69eps3bo1I0eOzIwZM/Lkk09W17S3t+fBBx/Mxo0bs379+mzevDnz5s2r064AAGqjoVKpVOo9xP+vRYsW5fvf/37+7d/+7TnPVyqVtLa25kMf+lAuueSSJElXV1eam5uzdu3azJ49Ow8//HCmTJmSbdu2ZerUqUmSDRs25O1vf3t+8YtfpLW19X+co7u7O01NTenq6kpjY+MLvMvk2EXfeN5zP1s28wW/HgCUoL///B4IBuQdwK997WuZOnVq3vWud2XcuHE55ZRTcsMNN1TPP/bYY+ns7Mz06dOrx5qamjJt2rRs2bIlSbJly5aMHj26Gn9JMn369AwaNChbt259zuv29PSku7u7zwMAYKAZkAH405/+NKtWrcpxxx2X22+/Pe9///vzwQ9+MOvWrUuSdHZ2Jkmam5v7vK65ubl6rrOzM+PGjetzfsiQIRkzZkx1zbMtXbo0TU1N1cf48eP7aYcAAP1nQAZgb29vXve61+Xqq6/OKaecknnz5uXCCy/M6tWr+/W6ixcvTldXV/Wxe/fufr0eAEB/GJABePTRR2fKlCl9jh1//PHZtWtXkqSlpSVJsmfPnj5r9uzZUz3X0tKSvXv39jn/9NNPZ9++fdU1zzZs2LA0Njb2eQAADDQDMgDPOOOM7Ny5s8+xRx55JBMnTkySTJo0KS0tLdm0aVP1fHd3d7Zu3Zq2trYkSVtbW/bv35/t27dX19x5553p7e3NtGnTarYXAIBaG1LvAf4QF198cU4//fRcffXVefe735177703119/fa6//vokSUNDQxYsWJArr7wyxx13XCZNmpTLLrssra2tOffcc5Pf3DF829veVv3W8VNPPZX58+dn9uzZv9dPAAMADFQDMgBPO+203HrrrVm8eHE+9alPZdKkSbnuuuvS3t5eXfPhD384Bw8ezLx587J///684Q1vyIYNGzJ8+PDqmptuuinz58/PmWeemUGDBmXWrFlZsWJFnXYFAFAbA/JzAI8UPgcQAAYenwM4QN8DCADAH04AAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRmSL0HgOdy7KJvPO+5ny2bWdNZAODFxh1AAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMK8KAJw2bJlaWhoyIIFC6rHnnzyyXR0dGTs2LF52ctellmzZmXPnj19Xrdr167MnDkzL33pSzNu3Lhceumlefrpp+uwAwCA2hnwAbht27Z84QtfyMknn9zn+MUXX5yvf/3r+cpXvpK77rorjz/+eN75zndWzx8+fDgzZ87MoUOHcvfdd2fdunVZu3ZtlixZUoddAADUzoAOwAMHDqS9vT033HBDjjrqqOrxrq6u3Hjjjbn22mvz1re+NaeeemrWrFmTu+++O/fcc0+S5I477shDDz2UL37xi3nta1+bs88+O1dccUVWrlyZQ4cO1XFXAAD9a0AHYEdHR2bOnJnp06f3Ob59+/Y89dRTfY5Pnjw5EyZMyJYtW5IkW7ZsyUknnZTm5ubqmhkzZqS7uzsPPvjgc16vp6cn3d3dfR4AAAPNkHoP8Ie65ZZb8oMf/CDbtm37nXOdnZ0ZOnRoRo8e3ed4c3NzOjs7q2t+O/6eOf/MueeydOnSXH755S/gLgAAam9A3gHcvXt3Lrrootx0000ZPnx4za67ePHidHV1VR+7d++u2bUBAF4oAzIAt2/fnr179+Z1r3tdhgwZkiFDhuSuu+7KihUrMmTIkDQ3N+fQoUPZv39/n9ft2bMnLS0tSZKWlpbf+angZ54/s+bZhg0blsbGxj4PAICBZkAG4Jlnnpn7778/O3bsqD6mTp2a9vb26v9+yUtekk2bNlVfs3PnzuzatSttbW1Jkra2ttx///3Zu3dvdc3GjRvT2NiYKVOm1GVfAAC1MCDfAzhq1KiceOKJfY6NHDkyY8eOrR6fO3duFi5cmDFjxqSxsTEf+MAH0tbWlte//vVJkrPOOitTpkzJeeedl+XLl6ezszMf//jH09HRkWHDhtVlXwAAtTAgA/D38elPfzqDBg3KrFmz0tPTkxkzZuTzn/989fzgwYOzfv36vP/9709bW1tGjhyZOXPm5FOf+lRd5wYA6G8vmgD87ne/2+f58OHDs3LlyqxcufJ5XzNx4sR885vfrMF0AABHjgH5HkAAAP5wAhAAoDACEACgMAIQAKAwAhAAoDACEACgMAIQAKAwAhAAoDACEACgMAIQAKAwAhAAoDACEACgMAIQAKAwAhAAoDACEACgMAIQAKAwAhAAoDACEACgMAIQAKAwAhAAoDACEACgMAIQAKAwAhAAoDACEACgMAIQAKAwAhAAoDACEACgMAIQAKAwAhAAoDACEACgMAIQAKAwAhAAoDACEACgMAIQAKAwAhAAoDACEACgMAIQAKAwAhAAoDACEACgMAIQAKAwAhAAoDACEACgMAIQAKAwAhAAoDACEACgMAIQAKAwAhAAoDACEACgMAIQAKAwQ+o9ANDXsYu+8bznfrZsZk1nAeDFyR1AAIDCDMgAXLp0aU477bSMGjUq48aNy7nnnpudO3f2WfPkk0+mo6MjY8eOzcte9rLMmjUre/bs6bNm165dmTlzZl760pdm3LhxufTSS/P000/XeDcAALU1IAPwrrvuSkdHR+65555s3LgxTz31VM4666wcPHiwuubiiy/O17/+9XzlK1/JXXfdlccffzzvfOc7q+cPHz6cmTNn5tChQ7n77ruzbt26rF27NkuWLKnTrgAAamNAvgdww4YNfZ6vXbs248aNy/bt2/OmN70pXV1dufHGG3PzzTfnrW99a5JkzZo1Of7443PPPffk9a9/fe6444489NBD+fa3v53m5ua89rWvzRVXXJGPfOQj+eQnP5mhQ4fWaXcAAP1rQN4BfLaurq4kyZgxY5Ik27dvz1NPPZXp06dX10yePDkTJkzIli1bkiRbtmzJSSedlObm5uqaGTNmpLu7Ow8++GDN9wAAUCsD8g7gb+vt7c2CBQtyxhln5MQTT0ySdHZ2ZujQoRk9enSftc3Nzens7Kyu+e34e+b8M+eeS09PT3p6eqrPu7u7X/D9AAD0twF/B7CjoyMPPPBAbrnlln6/1tKlS9PU1FR9jB8/vt+vCQDwQhvQATh//vysX78+3/nOd3LMMcdUj7e0tOTQoUPZv39/n/V79uxJS0tLdc2zfyr4mefPrHm2xYsXp6urq/rYvXt3P+wKAKB/DcgArFQqmT9/fm699dbceeedmTRpUp/zp556al7ykpdk06ZN1WM7d+7Mrl270tbWliRpa2vL/fffn71791bXbNy4MY2NjZkyZcpzXnfYsGFpbGzs8wAAGGgG5HsAOzo6cvPNN+erX/1qRo0aVX3PXlNTU0aMGJGmpqbMnTs3CxcuzJgxY9LY2JgPfOADaWtry+tf//okyVlnnZUpU6bkvPPOy/Lly9PZ2ZmPf/zj6ejoyLBhw+q8QwCA/jMgA3DVqlVJkj/7sz/rc3zNmjV53/velyT59Kc/nUGDBmXWrFnp6enJjBkz8vnPf766dvDgwVm/fn3e//73p62tLSNHjsycOXPyqU99qsa7AQCorQEZgJVK5X9cM3z48KxcuTIrV6583jUTJ07MN7/5zRd4OgCAI9uAfA8gAAB/OAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUJgh9R4A4Lcdu+gbz3vuZ8tm1nQWgBcrdwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKM6TeAwDwfx276BvPe+5ny2bWdBbgxc0dQACAwghAAIDCFB+AK1euzLHHHpvhw4dn2rRpuffee+s9EgBAvyr6PYBf+tKXsnDhwqxevTrTpk3LddddlxkzZmTnzp0ZN25cvccDKIr3QELtFH0H8Nprr82FF16Y888/P1OmTMnq1avz0pe+NP/4j/9Y79EAAPpNsXcADx06lO3bt2fx4sXVY4MGDcr06dOzZcuW53xNT09Penp6qs+7urqSJN3d3f0yY2/Pr5/3XH9d80hh78/txb73FL7/kvce+y/WiZ+4/XnPPXD5jH655jO/nyqVSr98/YGg2AD87//+7xw+fDjNzc19jjc3N+fHP/7xc75m6dKlufzyy3/n+Pjx4/ttzufTdF3NL3nEsPdylbz/kvce+y9Wf////sQTT6Spqal/L3KEKjYA/xCLFy/OwoULq897e3uzb9++jB07Ng0NDS/otbq7uzN+/Pjs3r07jY2NL+jXHgjsv+z9x69B8fuPXwP778f9VyqVPPHEE2ltbX1Bv+5AUmwAvvzlL8/gwYOzZ8+ePsf37NmTlpaW53zNsGHDMmzYsD7HRo8e3a9zNjY2FvkP/jPsv+z9x69B8fuPXwP776f9l3rn7xnF/hDI0KFDc+qpp2bTpk3VY729vdm0aVPa2trqOhsAQH8q9g5gkixcuDBz5szJ1KlT86d/+qe57rrrcvDgwZx//vn1Hg0AoN8UHYDvec978l//9V9ZsmRJOjs789rXvjYbNmz4nR8MqYdhw4blE5/4xO98y7kU9l/2/uPXoPj9x6+B/Re+//7WUCn5Z6ABAApU7HsAAQBKJQABAAojAAEACiMAAQAKIwCPMJs3b84555yT1tbWNDQ05Lbbbqv3SDW1dOnSnHbaaRk1alTGjRuXc889Nzt37qz3WDWzatWqnHzyydUPPm1ra8u3vvWteo9VN8uWLUtDQ0MWLFhQ71Fq5pOf/GQaGhr6PCZPnlzvsWrql7/8Zd773vdm7NixGTFiRE466aTcd9999R6rZo499tjf+T3Q0NCQjo6Oeo9WE4cPH85ll12WSZMmZcSIEXnVq16VK664oui/t7c/FP0xMEeigwcP5jWveU0uuOCCvPOd76z3ODV31113paOjI6eddlqefvrpfPSjH81ZZ52Vhx56KCNHjqz3eP3umGOOybJly3LcccelUqlk3bp1ecc73pEf/vCHOeGEE+o9Xk1t27YtX/jCF3LyySfXe5SaO+GEE/Ltb3+7+nzIkHL+Vf2rX/0qZ5xxRt7ylrfkW9/6Vl7xilfk0UcfzVFHHVXv0Wpm27ZtOXz4cPX5Aw88kD//8z/Pu971rrrOVSvXXHNNVq1alXXr1uWEE07Ifffdl/PPPz9NTU354Ac/WO/xXjTK+bfKAHH22Wfn7LPPrvcYdbNhw4Y+z9euXZtx48Zl+/btedOb3lS3uWrlnHPO6fP8qquuyqpVq3LPPfcUFYAHDhxIe3t7brjhhlx55ZX1HqfmhgwZ8rx/JeWL3TXXXJPx48dnzZo11WOTJk2q60y19opXvKLP82XLluVVr3pV3vzmN9dtplq6++678453vCMzZ85MfnNH9J/+6Z9y77331nu0FxXfAuaI1tXVlSQZM2ZMvUepucOHD+eWW27JwYMHi/vrCTs6OjJz5sxMnz693qPUxaOPPprW1ta88pWvTHt7e3bt2lXvkWrma1/7WqZOnZp3vetdGTduXE455ZTccMMN9R6rbg4dOpQvfvGLueCCC9LQ0FDvcWri9NNPz6ZNm/LII48kSX70ox/le9/7XtE3R/qDO4AcsXp7e7NgwYKcccYZOfHEE+s9Ts3cf//9aWtry5NPPpmXvexlufXWWzNlypR6j1Uzt9xyS37wgx9k27Zt9R6lLqZNm5a1a9fm1a9+df7zP/8zl19+ed74xjfmgQceyKhRo+o9Xr/76U9/mlWrVmXhwoX56Ec/mm3btuWDH/xghg4dmjlz5tR7vJq77bbbsn///rzvfe+r9yg1s2jRonR3d2fy5MkZPHhwDh8+nKuuuirt7e31Hu1FRQByxOro6MgDDzyQ733ve/UepaZe/epXZ8eOHenq6so///M/Z86cObnrrruKiMDdu3fnoosuysaNGzN8+PB6j1MXv32X4+STT860adMyceLEfPnLX87cuXPrOlst9Pb2ZurUqbn66quTJKecckoeeOCBrF69usgAvPHGG3P22WentbW13qPUzJe//OXcdNNNufnmm3PCCSdkx44dWbBgQVpbW4v8PdBfBCBHpPnz52f9+vXZvHlzjjnmmHqPU1NDhw7NH//xHydJTj311Gzbti2f+cxn8oUvfKHeo/W77du3Z+/evXnd615XPXb48OFs3rw5n/vc59LT05PBgwfXdcZaGz16dP7kT/4kP/nJT+o9Sk0cffTRv/MfO8cff3z+5V/+pW4z1cvPf/7zfPvb386//uu/1nuUmrr00kuzaNGizJ49O0ly0kkn5ec//3mWLl0qAF9AApAjSqVSyQc+8IHceuut+e53v1vcm7+fS29vb3p6euo9Rk2ceeaZuf/++/scO//88zN58uR85CMfKS7+8psfiPmP//iPnHfeefUepSbOOOOM3/nop0ceeSQTJ06s20z1smbNmowbN676wxCl+PWvf51Bg/r+iMLgwYPT29tbt5lejATgEebAgQN9/kv/sccey44dOzJmzJhMmDChrrPVQkdHR26++eZ89atfzahRo9LZ2ZkkaWpqyogRI+o9Xr9bvHhxzj777EyYMCFPPPFEbr755nz3u9/N7bffXu/RamLUqFG/837PkSNHZuzYscW8D/SSSy7JOeeck4kTJ+bxxx/PJz7xiQwePDh/+Zd/We/RauLiiy/O6aefnquvvjrvfve7c++99+b666/P9ddfX+/Raqq3tzdr1qzJnDlzivoYoPzm0xCuuuqqTJgwISeccEJ++MMf5tprr80FF1xQ79FeXCocUb7zne9UkvzOY86cOfUerSaea+9JKmvWrKn3aDVxwQUXVCZOnFgZOnRo5RWveEXlzDPPrNxxxx31Hquu3vzmN1cuuuiieo9RM+95z3sqRx99dGXo0KGVP/qjP6q85z3vqfzkJz+p91g19fWvf71y4oknVoYNG1aZPHly5frrr6/3SDV3++23V5JUdu7cWe9Raq67u7ty0UUXVSZMmFAZPnx45ZWvfGXlYx/7WKWnp6feo72oNFR8tDYAQFF8DiAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGH+D0qdXUuXgornAAAAAElFTkSuQmCC", - "text/html": [ - "\n", - " <div style=\"display: inline-block;\">\n", - " <div class=\"jupyter-widgets widget-label\" style=\"text-align: center;\">\n", - " Figure\n", - " </div>\n", - " <img src='' width=640.0/>\n", - " </div>\n", - " " - ], "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + "(array([1162., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 525., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 242., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 87., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 22., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 7.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 3.]),\n", + " array([1. , 1.09375, 1.1875 , 1.28125, 1.375 , 1.46875, 1.5625 ,\n", + " 1.65625, 1.75 , 1.84375, 1.9375 , 2.03125, 2.125 , 2.21875,\n", + " 2.3125 , 2.40625, 2.5 , 2.59375, 2.6875 , 2.78125, 2.875 ,\n", + " 2.96875, 3.0625 , 3.15625, 3.25 , 3.34375, 3.4375 , 3.53125,\n", + " 3.625 , 3.71875, 3.8125 , 3.90625, 4. , 4.09375, 4.1875 ,\n", + " 4.28125, 4.375 , 4.46875, 4.5625 , 4.65625, 4.75 , 4.84375,\n", + " 4.9375 , 5.03125, 5.125 , 5.21875, 5.3125 , 5.40625, 5.5 ,\n", + " 5.59375, 5.6875 , 5.78125, 5.875 , 5.96875, 6.0625 , 6.15625,\n", + " 6.25 , 6.34375, 6.4375 , 6.53125, 6.625 , 6.71875, 6.8125 ,\n", + " 6.90625, 7. ]),\n", + " <BarContainer object of 64 artists>)" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGdCAYAAAAMm0nCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAjF0lEQVR4nO3dfVSUdf7/8RdI3GQMiMXgbIps26rkXUnRZPdyRGXd9cRWFLVUrO5pwTK6gy3vysRsu5GWMDuteE56rPasllYkYcqWiIjLpmRkmyVlA3sOMRN0RJT5/vFbr19TWtgOznzo+TjnOqe5rs/MvOc6nsOzi5khxOv1egUAAGCQ0EAPAAAAcLIIGAAAYBwCBgAAGIeAAQAAxiFgAACAcQgYAABgHAIGAAAYh4ABAADGCQv0AH2lp6dHBw8eVHR0tEJCQgI9DgAA6AWv16uvvvpKDodDoaEnvs7SbwPm4MGDGjp0aKDHAAAAP0Jzc7POPvvsEx7vtwETHR0t/fcE2Gy2QI8DAAB6wePxaOjQodbP8RM56YCprq7WY489pvr6en3xxRdat26dZsyYIUnq7u7Wgw8+qNdff10ff/yxYmJilJaWpiVLlsjhcFiP0dbWptmzZ2vDhg0KDQ1VZmamli1bpjPOOMNa89577ykvL091dXU666yzNHv2bN133329nvPYr41sNhsBAwCAYX7o7R8n/Sbezs5OjRs3TqWlpd859vXXX2vXrl2aO3eudu3apb///e9qamrSr3/9a5912dnZamxsVGVlpTZu3Kjq6mrNmjXLOu7xeDR58mQlJiaqvr5ejz32mBYsWKAVK1ac7LgAAKAfCvlf/hp1SEiIzxWY46mrq9NFF12kTz/9VMOGDdPevXuVnJysuro6paSkSJIqKio0bdo0ffbZZ3I4HCorK9MDDzwgl8ul8PBwSVJhYaHWr1+vDz74oFezeTwexcTEyO12cwUGAABD9Pbnd59/jNrtdiskJESxsbGSpJqaGsXGxlrxIklpaWkKDQ1VbW2ttebyyy+34kWS0tPT1dTUpC+//PK4z9PV1SWPx+OzAQCA/qlPA+bQoUO6//77dcMNN1gV5XK5FB8f77MuLCxMcXFxcrlc1hq73e6z5tjtY2u+rbi4WDExMdbGJ5AAAOi/+ixguru7dd1118nr9aqsrKyvnsZSVFQkt9ttbc3NzX3+nAAAIDD65GPUx+Ll008/1ebNm31+h5WQkKDW1laf9UeOHFFbW5sSEhKsNS0tLT5rjt0+tubbIiIiFBER0QevBgAABBu/X4E5Fi/79u3TW2+9pcGDB/scdzqdam9vV319vbVv8+bN6unpUWpqqrWmurpa3d3d1prKykqNGDFCgwYN8vfIAADAMCcdMB0dHWpoaFBDQ4Mkaf/+/WpoaNCBAwfU3d2t3/72t9q5c6dWr16to0ePyuVyyeVy6fDhw5KkUaNGacqUKZo5c6Z27Nihd999V/n5+crKyrK+K+bGG29UeHi4cnNz1djYqBdffFHLli1TQUGBv18/AAAw0El/jHrLli266qqrvrM/JydHCxYsUFJS0nHv9/bbb+vKK6+U/vtFdvn5+T5fZFdSUnLCL7I788wzNXv2bN1///29npOPUQMAYJ7e/vz+n74HJpgRMAAAmCdovgcGAADA3wgYAABgHAIGAAAYh4ABAADG6ZMvsuvvhhe+dsJjnyzJOKWzAADwU8QVGAAAYBwCBgAAGIeAAQAAxiFgAACAcQgYAABgHAIGAAAYh4ABAADGIWAAAIBxCBgAAGAcAgYAABiHgAEAAMYhYAAAgHEIGAAAYBwCBgAAGIeAAQAAxiFgAACAcQgYAABgHAIGAAAYh4ABAADGIWAAAIBxCBgAAGAcAgYAABiHgAEAAMYhYAAAgHEIGAAAYBwCBgAAGIeAAQAAxiFgAACAcQgYAABgHAIGAAAYh4ABAADGIWAAAIBxCBgAAGAcAgYAABiHgAEAAMYhYAAAgHEIGAAAYBwCBgAAGIeAAQAAxiFgAACAcQgYAABgHAIGAAAYh4ABAADGIWAAAIBxTjpgqqurNX36dDkcDoWEhGj9+vU+x71er+bNm6chQ4YoKipKaWlp2rdvn8+atrY2ZWdny2azKTY2Vrm5uero6PBZ89577+myyy5TZGSkhg4dqqVLl/7Y1wgAAPqZkw6Yzs5OjRs3TqWlpcc9vnTpUpWUlGj58uWqra3VwIEDlZ6erkOHDllrsrOz1djYqMrKSm3cuFHV1dWaNWuWddzj8Wjy5MlKTExUfX29HnvsMS1YsEArVqz4sa8TAAD0IyFer9f7o+8cEqJ169ZpxowZ0n+vvjgcDt1999265557JElut1t2u13l5eXKysrS3r17lZycrLq6OqWkpEiSKioqNG3aNH322WdyOBwqKyvTAw88IJfLpfDwcElSYWGh1q9frw8++KBXs3k8HsXExMjtdstms/3Yl3hcwwtfO+GxT5Zk+PW5AAD4Kentz2+/vgdm//79crlcSktLs/bFxMQoNTVVNTU1kqSamhrFxsZa8SJJaWlpCg0NVW1trbXm8ssvt+JFktLT09XU1KQvv/zyuM/d1dUlj8fjswEAgP7JrwHjcrkkSXa73We/3W63jrlcLsXHx/scDwsLU1xcnM+a4z3GN5/j24qLixUTE2NtQ4cO9eMrAwAAwaTffAqpqKhIbrfb2pqbmwM9EgAA6CN+DZiEhARJUktLi8/+lpYW61hCQoJaW1t9jh85ckRtbW0+a473GN98jm+LiIiQzWbz2QAAQP/k14BJSkpSQkKCqqqqrH0ej0e1tbVyOp2SJKfTqfb2dtXX11trNm/erJ6eHqWmplprqqur1d3dba2prKzUiBEjNGjQIH+ODAAADHTSAdPR0aGGhgY1NDRI/33jbkNDgw4cOKCQkBDNmTNHixYt0quvvqrdu3frd7/7nRwOh/VJpVGjRmnKlCmaOXOmduzYoXfffVf5+fnKysqSw+GQJN14440KDw9Xbm6uGhsb9eKLL2rZsmUqKCjw9+sHAAAGCjvZO+zcuVNXXXWVdftYVOTk5Ki8vFz33XefOjs7NWvWLLW3t+vSSy9VRUWFIiMjrfusXr1a+fn5mjRpkkJDQ5WZmamSkhLreExMjDZt2qS8vDxNmDBBZ555pubNm+fzXTEAAOCn63/6HphgxvfAAABgnoB8DwwAAMCpQMAAAADjEDAAAMA4BAwAADAOAQMAAIxDwAAAAOMQMAAAwDgEDAAAMA4BAwAAjEPAAAAA4xAwAADAOAQMAAAwDgEDAACMQ8AAAADjEDAAAMA4BAwAADAOAQMAAIxDwAAAAOMQMAAAwDgEDAAAMA4BAwAAjEPAAAAA4xAwAADAOAQMAAAwDgEDAACMQ8AAAADjEDAAAMA4BAwAADAOAQMAAIxDwAAAAOMQMAAAwDgEDAAAMA4BAwAAjEPAAAAA4xAwAADAOAQMAAAwDgEDAACMQ8AAAADjEDAAAMA4BAwAADAOAQMAAIxDwAAAAOMQMAAAwDgEDAAAMA4BAwAAjEPAAAAA4xAwAADAOAQMAAAwDgEDAACMQ8AAAADj+D1gjh49qrlz5yopKUlRUVE655xz9PDDD8vr9VprvF6v5s2bpyFDhigqKkppaWnat2+fz+O0tbUpOztbNptNsbGxys3NVUdHh7/HBQAABvJ7wDz66KMqKyvTX/7yF+3du1ePPvqoli5dqqefftpas3TpUpWUlGj58uWqra3VwIEDlZ6erkOHDllrsrOz1djYqMrKSm3cuFHV1dWaNWuWv8cFAAAGCvF+89KIH/zqV7+S3W7X888/b+3LzMxUVFSUXnjhBXm9XjkcDt1999265557JElut1t2u13l5eXKysrS3r17lZycrLq6OqWkpEiSKioqNG3aNH322WdyOBw/OIfH41FMTIzcbrdsNps/X6KGF752wmOfLMnw63MBAPBT0tuf336/AnPJJZeoqqpKH374oSTpX//6l9555x1NnTpVkrR//365XC6lpaVZ94mJiVFqaqpqamokSTU1NYqNjbXiRZLS0tIUGhqq2tra4z5vV1eXPB6PzwYAAPqnMH8/YGFhoTwej0aOHKkBAwbo6NGjeuSRR5SdnS1JcrlckiS73e5zP7vdbh1zuVyKj4/3HTQsTHFxcdaabysuLtbChQv9/XIAAEAQ8vsVmJdeekmrV6/WmjVrtGvXLq1atUp//vOftWrVKn8/lY+ioiK53W5ra25u7tPnAwAAgeP3KzD33nuvCgsLlZWVJUkaM2aMPv30UxUXFysnJ0cJCQmSpJaWFg0ZMsS6X0tLi8aPHy9JSkhIUGtrq8/jHjlyRG1tbdb9vy0iIkIRERH+fjkAACAI+f0KzNdff63QUN+HHTBggHp6eiRJSUlJSkhIUFVVlXXc4/GotrZWTqdTkuR0OtXe3q76+nprzebNm9XT06PU1FR/jwwAAAzj9ysw06dP1yOPPKJhw4bpvPPO0z//+U898cQTuu222yRJISEhmjNnjhYtWqRzzz1XSUlJmjt3rhwOh2bMmCFJGjVqlKZMmaKZM2dq+fLl6u7uVn5+vrKysnr1CSQAANC/+T1gnn76ac2dO1d//OMf1draKofDoT/84Q+aN2+etea+++5TZ2enZs2apfb2dl166aWqqKhQZGSktWb16tXKz8/XpEmTFBoaqszMTJWUlPh7XAAAYCC/fw9MsOB7YAAAME/AvgcGAACgrxEwAADAOAQMAAAwDgEDAACMQ8AAAADjEDAAAMA4BAwAADAOAQMAAIxDwAAAAOMQMAAAwDgEDAAAMA4BAwAAjEPAAAAA4xAwAADAOAQMAAAwDgEDAACMQ8AAAADjEDAAAMA4BAwAADAOAQMAAIxDwAAAAOMQMAAAwDgEDAAAMA4BAwAAjEPAAAAA4xAwAADAOAQMAAAwDgEDAACMQ8AAAADjEDAAAMA4BAwAADAOAQMAAIxDwAAAAOMQMAAAwDgEDAAAMA4BAwAAjEPAAAAA4xAwAADAOAQMAAAwDgEDAACMQ8AAAADjEDAAAMA4BAwAADAOAQMAAIxDwAAAAOMQMAAAwDgEDAAAMA4BAwAAjEPAAAAA4/RJwHz++ee66aabNHjwYEVFRWnMmDHauXOnddzr9WrevHkaMmSIoqKilJaWpn379vk8Rltbm7Kzs2Wz2RQbG6vc3Fx1dHT0xbgAAMAwfg+YL7/8UhMnTtRpp52mN954Q++//74ef/xxDRo0yFqzdOlSlZSUaPny5aqtrdXAgQOVnp6uQ4cOWWuys7PV2NioyspKbdy4UdXV1Zo1a5a/xwUAAAYK8Xq9Xn8+YGFhod5991394x//OO5xr9crh8Ohu+++W/fcc48kye12y263q7y8XFlZWdq7d6+Sk5NVV1enlJQUSVJFRYWmTZumzz77TA6H4wfn8Hg8iomJkdvtls1m8+dL1PDC10547JMlGX59LgAAfkp6+/Pb71dgXn31VaWkpOjaa69VfHy8zj//fD333HPW8f3798vlciktLc3aFxMTo9TUVNXU1EiSampqFBsba8WLJKWlpSk0NFS1tbX+HhkAABjG7wHz8ccfq6ysTOeee67efPNN3X777brjjju0atUqSZLL5ZIk2e12n/vZ7XbrmMvlUnx8vM/xsLAwxcXFWWu+raurSx6Px2cDAAD9U5i/H7Cnp0cpKSlavHixJOn888/Xnj17tHz5cuXk5Pj76SzFxcVauHBhnz0+AAAIHn6/AjNkyBAlJyf77Bs1apQOHDggSUpISJAktbS0+KxpaWmxjiUkJKi1tdXn+JEjR9TW1mat+baioiK53W5ra25u9uvrAgAAwcPvATNx4kQ1NTX57Pvwww+VmJgoSUpKSlJCQoKqqqqs4x6PR7W1tXI6nZIkp9Op9vZ21dfXW2s2b96snp4epaamHvd5IyIiZLPZfDYAANA/+f1XSHfddZcuueQSLV68WNddd5127NihFStWaMWKFZKkkJAQzZkzR4sWLdK5556rpKQkzZ07Vw6HQzNmzJD+e8VmypQpmjlzppYvX67u7m7l5+crKyurV59AAgAA/ZvfA+bCCy/UunXrVFRUpIceekhJSUl66qmnlJ2dba2577771NnZqVmzZqm9vV2XXnqpKioqFBkZaa1ZvXq18vPzNWnSJIWGhiozM1MlJSX+HhcAABjI798DEyz4HhgAAMwTsO+BAQAA6GsEDAAAMA4BAwAAjEPAAAAA4xAwAADAOAQMAAAwDgEDAACMQ8AAAADjEDAAAMA4BAwAADAOAQMAAIxDwAAAAOMQMAAAwDgEDAAAMA4BAwAAjEPAAAAA44QFegD0L8MLXzvhsU+WZJzSWQAA/RdXYAAAgHEIGAAAYBwCBgAAGIeAAQAAxiFgAACAcQgYAABgHAIGAAAYh4ABAADGIWAAAIBxCBgAAGAcAgYAABiHgAEAAMYhYAAAgHEIGAAAYBwCBgAAGIeAAQAAxiFgAACAcQgYAABgHAIGAAAYh4ABAADGIWAAAIBxCBgAAGAcAgYAABiHgAEAAMYhYAAAgHEIGAAAYBwCBgAAGIeAAQAAxiFgAACAcQgYAABgHAIGAAAYh4ABAADGIWAAAIBx+jxglixZopCQEM2ZM8fad+jQIeXl5Wnw4ME644wzlJmZqZaWFp/7HThwQBkZGTr99NMVHx+ve++9V0eOHOnrcQEAgAH6NGDq6ur07LPPauzYsT7777rrLm3YsEEvv/yytm7dqoMHD+qaa66xjh89elQZGRk6fPiwtm3bplWrVqm8vFzz5s3ry3EBAIAh+ixgOjo6lJ2dreeee06DBg2y9rvdbj3//PN64okndPXVV2vChAlauXKltm3bpu3bt0uSNm3apPfff18vvPCCxo8fr6lTp+rhhx9WaWmpDh8+3FcjAwAAQ/RZwOTl5SkjI0NpaWk+++vr69Xd3e2zf+TIkRo2bJhqamokSTU1NRozZozsdru1Jj09XR6PR42Njcd9vq6uLnk8Hp8NAAD0T2F98aBr167Vrl27VFdX951jLpdL4eHhio2N9dlvt9vlcrmsNd+Ml2PHjx07nuLiYi1cuNCPrwIAAAQrv1+BaW5u1p133qnVq1crMjLS3w9/QkVFRXK73dbW3Nx8yp4bAACcWn4PmPr6erW2tuqCCy5QWFiYwsLCtHXrVpWUlCgsLEx2u12HDx9We3u7z/1aWlqUkJAgSUpISPjOp5KO3T625tsiIiJks9l8NgAA0D/5PWAmTZqk3bt3q6GhwdpSUlKUnZ1t/fdpp52mqqoq6z5NTU06cOCAnE6nJMnpdGr37t1qbW211lRWVspmsyk5OdnfIwMAAMP4/T0w0dHRGj16tM++gQMHavDgwdb+3NxcFRQUKC4uTjabTbNnz5bT6dTFF18sSZo8ebKSk5N18803a+nSpXK5XHrwwQeVl5eniIgIf48MAAAM0ydv4v0hTz75pEJDQ5WZmamuri6lp6frmWeesY4PGDBAGzdu1O233y6n06mBAwcqJydHDz30UCDGBQAAQeaUBMyWLVt8bkdGRqq0tFSlpaUnvE9iYqJef/31UzAdAAAwDX8LCQAAGIeAAQAAxiFgAACAcQgYAABgHAIGAAAYh4ABAADGIWAAAIBxCBgAAGAcAgYAABiHgAEAAMYhYAAAgHEIGAAAYBwCBgAAGIeAAQAAxiFgAACAcQgYAABgHAIGAAAYh4ABAADGIWAAAIBxCBgAAGAcAgYAABiHgAEAAMYhYAAAgHEIGAAAYBwCBgAAGIeAAQAAxiFgAACAcQgYAABgHAIGAAAYh4ABAADGIWAAAIBxCBgAAGAcAgYAABiHgAEAAMYhYAAAgHEIGAAAYBwCBgAAGIeAAQAAxiFgAACAcQgYAABgHAIGAAAYJyzQAwA/dcMLXzvhsU+WZJzSWQDAFFyBAQAAxiFgAACAcQgYAABgHAIGAAAYh4ABAADGIWAAAIBxCBgAAGAcAgYAABjH7wFTXFysCy+8UNHR0YqPj9eMGTPU1NTks+bQoUPKy8vT4MGDdcYZZygzM1MtLS0+aw4cOKCMjAydfvrpio+P17333qsjR474e1wAAGAgvwfM1q1blZeXp+3bt6uyslLd3d2aPHmyOjs7rTV33XWXNmzYoJdffllbt27VwYMHdc0111jHjx49qoyMDB0+fFjbtm3TqlWrVF5ernnz5vl7XAAAYCC//ymBiooKn9vl5eWKj49XfX29Lr/8crndbj3//PNas2aNrr76aknSypUrNWrUKG3fvl0XX3yxNm3apPfff19vvfWW7Ha7xo8fr4cfflj333+/FixYoPDwcH+PDQAADNLn74Fxu92SpLi4OElSfX29uru7lZaWZq0ZOXKkhg0bppqaGklSTU2NxowZI7vdbq1JT0+Xx+NRY2PjcZ+nq6tLHo/HZwMAAP1TnwZMT0+P5syZo4kTJ2r06NGSJJfLpfDwcMXGxvqstdvtcrlc1ppvxsux48eOHU9xcbFiYmKsbejQoX30qgAAQKD1acDk5eVpz549Wrt2bV8+jSSpqKhIbrfb2pqbm/v8OQEAQGD4/T0wx+Tn52vjxo2qrq7W2Wefbe1PSEjQ4cOH1d7e7nMVpqWlRQkJCdaaHTt2+DzesU8pHVvzbREREYqIiOijVwMAAIKJ36/AeL1e5efna926ddq8ebOSkpJ8jk+YMEGnnXaaqqqqrH1NTU06cOCAnE6nJMnpdGr37t1qbW211lRWVspmsyk5OdnfIwMAAMP4/QpMXl6e1qxZo1deeUXR0dHWe1ZiYmIUFRWlmJgY5ebmqqCgQHFxcbLZbJo9e7acTqcuvvhiSdLkyZOVnJysm2++WUuXLpXL5dKDDz6ovLw8rrIAAAD/B0xZWZkk6corr/TZv3LlSt1yyy2SpCeffFKhoaHKzMxUV1eX0tPT9cwzz1hrBwwYoI0bN+r222+X0+nUwIEDlZOTo4ceesjf4wIAAAP5PWC8Xu8PromMjFRpaalKS0tPuCYxMVGvv/66n6cDAAD9AX8LCQAAGIeAAQAAxiFgAACAcQgYAABgHAIGAAAYh4ABAADGIWAAAIBxCBgAAGAcAgYAABiHgAEAAMYhYAAAgHEIGAAAYBwCBgAAGIeAAQAAxiFgAACAcQgYAABgHAIGAAAYh4ABAADGIWAAAIBxCBgAAGAcAgYAABiHgAEAAMYhYAAAgHEIGAAAYBwCBgAAGIeAAQAAxiFgAACAccICPQAA/BjDC1874bFPlmSc0lkAnHpcgQEAAMYhYAAAgHEIGAAAYBwCBgAAGIeAAQAAxiFgAACAcQgYAABgHAIGAAAYh4ABAADGIWAAAIBxCBgAAGAcAgYAABiHgAEAAMYhYAAAgHEIGAAAYBwCBgAAGIeAAQAAxiFgAACAcQgYAABgnLBADwAA8J/hha+d8NgnSzJO6SxAX+IKDAAAME5QB0xpaamGDx+uyMhIpaamaseOHYEeCQAABIGgDZgXX3xRBQUFmj9/vnbt2qVx48YpPT1dra2tgR4NAAAEWNC+B+aJJ57QzJkzdeutt0qSli9frtdee01//etfVVhYGOjxAAD9CO8dMk9QBszhw4dVX1+voqIia19oaKjS0tJUU1Nz3Pt0dXWpq6vLuu12uyVJHo/H7/P1dH19wmN98Xwm4dycPM7Zj8N5Oz7Oy4/DeTu+0fPfPOGxPQvT++Q5j51vr9f7/Qu9Qejzzz/3SvJu27bNZ/+9997rveiii457n/nz53slsbGxsbGxsfWDrbm5+XtbISivwPwYRUVFKigosG739PSora1NgwcPVkhIiN+ex+PxaOjQoWpubpbNZvPb4/ZXnK/e41z1Hueq9zhXvce56r2+PFder1dfffWVHA7H964LyoA588wzNWDAALW0tPjsb2lpUUJCwnHvExERoYiICJ99sbGxfTajzWbjH/hJ4Hz1Hueq9zhXvce56j3OVe/11bmKiYn5wTVB+Smk8PBwTZgwQVVVVda+np4eVVVVyel0BnQ2AAAQeEF5BUaSCgoKlJOTo5SUFF100UV66qmn1NnZaX0qCQAA/HQFbcBcf/31+s9//qN58+bJ5XJp/PjxqqiokN1uD+hcERERmj9//nd+XYXj43z1Hueq9zhXvce56j3OVe8Fw7kK8f7g55QAAACCS1C+BwYAAOD7EDAAAMA4BAwAADAOAQMAAIxDwJyE6upqTZ8+XQ6HQyEhIVq/fn2gRwpKxcXFuvDCCxUdHa34+HjNmDFDTU1NgR4rKJWVlWns2LHWl0E5nU698cYbgR7LCEuWLFFISIjmzJkT6FGC0oIFCxQSEuKzjRw5MtBjBa3PP/9cN910kwYPHqyoqCiNGTNGO3fuDPRYQWf48OHf+XcVEhKivLy8Uz4LAXMSOjs7NW7cOJWWlgZ6lKC2detW5eXlafv27aqsrFR3d7cmT56szs7OQI8WdM4++2wtWbJE9fX12rlzp66++mr95je/UWNjY6BHC2p1dXV69tlnNXbs2ECPEtTOO+88ffHFF9b2zjvvBHqkoPTll19q4sSJOu200/TGG2/o/fff1+OPP65BgwYFerSgU1dX5/NvqrKyUpJ07bXXnvJZgvZ7YILR1KlTNXXq1ECPEfQqKip8bpeXlys+Pl719fW6/PLLAzZXMJo+fbrP7UceeURlZWXavn27zjvvvIDNFcw6OjqUnZ2t5557TosWLQr0OEEtLCzshH9+Bf/fo48+qqFDh2rlypXWvqSkpIDOFKzOOussn9tLlizROeecoyuuuOKUz8IVGPQ5t9stSYqLiwv0KEHt6NGjWrt2rTo7O/mTGd8jLy9PGRkZSktLC/QoQW/fvn1yOBz6+c9/ruzsbB04cCDQIwWlV199VSkpKbr22msVHx+v888/X88991ygxwp6hw8f1gsvvKDbbrvNr380ube4AoM+1dPTozlz5mjixIkaPXp0oMcJSrt375bT6dShQ4d0xhlnaN26dUpOTg70WEFp7dq12rVrl+rq6gI9StBLTU1VeXm5RowYoS+++EILFy7UZZddpj179ig6OjrQ4wWVjz/+WGVlZSooKNCf/vQn1dXV6Y477lB4eLhycnICPV7QWr9+vdrb23XLLbcE5PkJGPSpvLw87dmzh9+9f48RI0aooaFBbrdbf/vb35STk6OtW7cSMd/S3NysO++8U5WVlYqMjAz0OEHvm7/uHjt2rFJTU5WYmKiXXnpJubm5AZ0t2PT09CglJUWLFy+WJJ1//vnas2ePli9fTsB8j+eff15Tp06Vw+EIyPPzKyT0mfz8fG3cuFFvv/22zj777ECPE7TCw8P1i1/8QhMmTFBxcbHGjRunZcuWBXqsoFNfX6/W1lZdcMEFCgsLU1hYmLZu3aqSkhKFhYXp6NGjgR4xqMXGxuqXv/ylPvroo0CPEnSGDBnynf9hGDVqFL9y+x6ffvqp3nrrLf3+978P2AxcgYHfeb1ezZ49W+vWrdOWLVt4M9xJ6unpUVdXV6DHCDqTJk3S7t27ffbdeuutGjlypO6//34NGDAgYLOZoKOjQ//+97918803B3qUoDNx4sTvfNXDhx9+qMTExIDNFOxWrlyp+Ph4ZWRkBGwGAuYkdHR0+Pzfy/79+9XQ0KC4uDgNGzYsoLMFk7y8PK1Zs0avvPKKoqOj5XK5JEkxMTGKiooK9HhBpaioSFOnTtWwYcP01Vdfac2aNdqyZYvefPPNQI8WdKKjo7/zPqqBAwdq8ODBvL/qOO655x5Nnz5diYmJOnjwoObPn68BAwbohhtuCPRoQeeuu+7SJZdcosWLF+u6667Tjh07tGLFCq1YsSLQowWlnp4erVy5Ujk5OQoLC2BGeNFrb7/9tlfSd7acnJxAjxZUjneOJHlXrlwZ6NGCzm233eZNTEz0hoeHe8866yzvpEmTvJs2bQr0WMa44oorvHfeeWegxwhK119/vXfIkCHe8PBw789+9jPv9ddf7/3oo48CPVbQ2rBhg3f06NHeiIgI78iRI70rVqwI9EhB68033/RK8jY1NQV0jhDv//uBAwAAYAzexAsAAIxDwAAAAOMQMAAAwDgEDAAAMA4BAwAAjEPAAAAA4xAwAADAOAQMAAAwDgEDAACMQ8AAAADjEDAAAMA4BAwAADDO/wGGkh4mNSHckgAAAABJRU5ErkJggg==", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" ] }, "metadata": {}, @@ -322,9 +292,7 @@ } ], "source": [ - "with plt.ioff():\n", - " plt.hist(tune_data['labels'],bins=64)\n", - " plt.show()" + "plt.hist(mktunebatch(2048)[1].cpu(), bins=64)" ] }, { @@ -338,7 +306,7 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 7, "execution_state": "idle", "metadata": { "id": "tLOWhg_CeWzH" @@ -383,12 +351,12 @@ "id": "bpIeg86S-hBb" }, "source": [ - "# Step 3: Load Data" + "# Step 3: Make Model" ] }, { "cell_type": "code", - "execution_count": 78, + "execution_count": 49, "execution_state": "idle", "metadata": { "colab": { @@ -402,41 +370,27 @@ "name": "stdout", "output_type": "stream", "text": [ - "Trainable parameters in the model: 2390K\n" + "Trainable parameters in the model: 505K\n" ] } ], "source": [ - "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", - "assert device.type == 'cuda', \"CUDA is not available. Please check your GPU setup.\"\n", - "\n", "# PARAMS\n", "VOCAB_SIZE = 1 + MAX_VTXS # one more than the max number of vertices\n", - "MODEL_DIM = 256 # Dimension of model (embedding and transformer)\n", + "MODEL_DIM = 64 # Dimension of model (embedding and transformer)\n", "NEPOCHS = 1000\n", - "BSZ = 3072\n", + "BSZ = 2048 # Batch size\n", + "BPE = 32 # Batches per epoch\n", "LR = 0.003\n", "WD = 0.002\n", "NHEADS = 4\n", - "NLAYERS = 3\n", - "PAD_TOKEN = 0\n", + "NLAYERS = 10\n", "DROPOUT = 0.2\n", "model = TransformerModel(input_dim=VOCAB_SIZE, model_dim=MODEL_DIM,\n", " output_dim=1, num_heads=NHEADS,\n", " num_layers=NLAYERS, seq_len=SEQ_LEN,\n", " dropout=DROPOUT, device=device).to(device)\n", "\n", - "with open(\"data.pkl\", \"rb\") as f:\n", - " pickled_stuff = pickle.load(f)\n", - "\n", - "data = pickled_stuff[\"data\"].to(device)\n", - "label = pickled_stuff[\"labels\"].to(device)\n", - "padding_mask = (data == PAD_TOKEN).bool().to(device)\n", - "dataset = TensorDataset(data, label, padding_mask)\n", - "train_dataset, test_dataset = torch.utils.data.random_split(dataset, [.8, .2])\n", - "train_loader = DataLoader(train_dataset, batch_size=BSZ, shuffle=True)\n", - "test_loader = DataLoader(test_dataset, batch_size=BSZ, shuffle=True)\n", - "\n", "criterion = nn.MSELoss()\n", "optimizer = torch.optim.Adam(model.parameters(), lr=LR, weight_decay=WD)\n", "\n", @@ -445,25 +399,6 @@ ] }, { - "cell_type": "code", - "execution_count": 63, - "execution_state": "idle", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tensor(141.4637, device='cuda:0')\n" - ] - } - ], - "source": [ - "baseline_error = criterion(label, torch.tensor(1.5, dtype=torch.float32, device=device))\n", - "print(baseline_error)" - ] - }, - { "cell_type": "markdown", "metadata": { "id": "f8Zn33m7CxL5" @@ -474,7 +409,7 @@ }, { "cell_type": "code", - "execution_count": 60, + "execution_count": 46, "execution_state": "idle", "metadata": {}, "outputs": [], @@ -483,23 +418,22 @@ " model.eval()\n", " test_loss = 0\n", " with torch.no_grad():\n", - " for batch_src, batch_labels, batch_padding_mask in test_loader:\n", - " output = model(batch_src, batch_padding_mask)\n", - " loss = criterion(output.squeeze(1), batch_labels)\n", - " test_loss += loss.item()/len(test_loader)\n", - " return test_loss" + " batch_src, batch_labels, batch_padding_mask = mkbatch(BSZ)\n", + " output = model(batch_src, batch_padding_mask)\n", + " loss = criterion(output.squeeze(1), batch_labels)\n", + " return loss.item()" ] }, { "cell_type": "code", - "execution_count": 74, + "execution_count": 51, "execution_state": "idle", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "329425e6ee6d4189aefee350eba741c7", + "model_id": "3ba829714ada43c184a04b0a0b4d06f2", "version_major": 2, "version_minor": 0 }, @@ -524,9 +458,11 @@ ], "source": [ "# This has to be in a separate cell for some weird event loop reasons\n", + "%matplotlib widget\n", "fig,ax = plt.subplots()\n", "fig.suptitle('MSE vs Epochs')\n", - "plt.show()" + "plt.show()\n", + "%matplotlib inline" ] }, { @@ -543,166 +479,836 @@ }, "outputs": [ { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.32it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/1000 \t Train Err: 80.9485 \t Test Err: 83.3727\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.33it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 2/1000 \t Train Err: 81.9558 \t Test Err: 80.7205\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.32it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 3/1000 \t Train Err: 81.2221 \t Test Err: 80.6387\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.32it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 4/1000 \t Train Err: 81.8502 \t Test Err: 80.0444\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.32it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 5/1000 \t Train Err: 81.5031 \t Test Err: 83.7185\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.33it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 6/1000 \t Train Err: 81.3043 \t Test Err: 81.4035\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.22it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 7/1000 \t Train Err: 81.0616 \t Test Err: 83.7366\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.28it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 8/1000 \t Train Err: 81.5992 \t Test Err: 81.2875\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.31it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 9/1000 \t Train Err: 81.3813 \t Test Err: 80.2028\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.31it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 10/1000 \t Train Err: 81.5702 \t Test Err: 82.8906\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.32it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 11/1000 \t Train Err: 80.6410 \t Test Err: 81.6353\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.31it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 12/1000 \t Train Err: 81.0706 \t Test Err: 81.4791\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.31it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 13/1000 \t Train Err: 81.0538 \t Test Err: 81.0688\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.31it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 14/1000 \t Train Err: 81.4753 \t Test Err: 85.5978\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.31it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 15/1000 \t Train Err: 81.2319 \t Test Err: 81.5276\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.31it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 16/1000 \t Train Err: 82.0405 \t Test Err: 80.4760\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.31it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 17/1000 \t Train Err: 81.2955 \t Test Err: 80.1790\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:10<00:00, 3.05it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 18/1000 \t Train Err: 81.3618 \t Test Err: 81.0788\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.31it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 19/1000 \t Train Err: 81.4784 \t Test Err: 82.8825\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.31it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 20/1000 \t Train Err: 80.7994 \t Test Err: 81.8424\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.31it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 21/1000 \t Train Err: 80.9150 \t Test Err: 80.6047\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.31it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 22/1000 \t Train Err: 81.7054 \t Test Err: 78.2826\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.31it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 23/1000 \t Train Err: 81.6376 \t Test Err: 83.0617\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.32it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 24/1000 \t Train Err: 81.1639 \t Test Err: 79.6304\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.33it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 25/1000 \t Train Err: 81.9200 \t Test Err: 82.3950\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.36it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 26/1000 \t Train Err: 81.0736 \t Test Err: 83.0353\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.31it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 27/1000 \t Train Err: 81.8939 \t Test Err: 80.7981\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.35it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 28/1000 \t Train Err: 80.9842 \t Test Err: 80.3877\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.36it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 29/1000 \t Train Err: 81.6111 \t Test Err: 82.5336\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.37it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 30/1000 \t Train Err: 81.5480 \t Test Err: 82.7556\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.37it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 31/1000 \t Train Err: 81.2413 \t Test Err: 82.6558\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.36it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 32/1000 \t Train Err: 81.1720 \t Test Err: 82.2116\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.36it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 33/1000 \t Train Err: 81.7244 \t Test Err: 79.6762\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.37it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 34/1000 \t Train Err: 81.4536 \t Test Err: 84.7001\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.30it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 35/1000 \t Train Err: 82.1729 \t Test Err: 82.0201\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.37it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 36/1000 \t Train Err: 81.7041 \t Test Err: 83.0776\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.37it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 37/1000 \t Train Err: 81.2599 \t Test Err: 82.2269\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.37it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 38/1000 \t Train Err: 81.6489 \t Test Err: 81.6412\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.31it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 39/1000 \t Train Err: 81.4363 \t Test Err: 81.9661\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.32it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 40/1000 \t Train Err: 81.0156 \t Test Err: 78.0546\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.36it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 41/1000 \t Train Err: 81.2752 \t Test Err: 82.3804\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.38it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 42/1000 \t Train Err: 81.1951 \t Test Err: 81.7494\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.38it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 43/1000 \t Train Err: 81.4909 \t Test Err: 81.9628\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.37it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 44/1000 \t Train Err: 81.5728 \t Test Err: 78.5453\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.37it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 45/1000 \t Train Err: 81.9706 \t Test Err: 81.1184\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.38it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 46/1000 \t Train Err: 81.1537 \t Test Err: 81.5044\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.37it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 47/1000 \t Train Err: 80.8373 \t Test Err: 82.4630\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.38it/s]\n" + ] + }, + { "name": "stdout", "output_type": "stream", "text": [ - "Epoch 1/1000 \t Train Err: 88.4438 \t Test Err: 72.6466 \t baseline err: 141.4637\n", - "Epoch 2/1000 \t Train Err: 72.6060 \t Test Err: 75.4987 \t baseline err: 141.4637\n", - "Epoch 3/1000 \t Train Err: 72.6729 \t Test Err: 73.9506 \t baseline err: 141.4637\n", - "Epoch 6/1000 \t Train Err: 72.7866 \t Test Err: 72.4612 \t baseline err: 141.4637\n", - "Epoch 7/1000 \t Train Err: 73.0815 \t Test Err: 74.9404 \t baseline err: 141.4637\n", - "Epoch 8/1000 \t Train Err: 72.8054 \t Test Err: 73.7412 \t baseline err: 141.4637\n", - "Epoch 9/1000 \t Train Err: 73.0514 \t Test Err: 82.7393 \t baseline err: 141.4637\n", - "Epoch 10/1000 \t Train Err: 73.0291 \t Test Err: 72.2577 \t baseline err: 141.4637\n", - "Epoch 11/1000 \t Train Err: 73.0081 \t Test Err: 72.4944 \t baseline err: 141.4637\n", - "Epoch 12/1000 \t Train Err: 72.6500 \t Test Err: 75.2036 \t baseline err: 141.4637\n", - "Epoch 13/1000 \t Train Err: 72.6255 \t Test Err: 73.4970 \t baseline err: 141.4637\n", - "Epoch 14/1000 \t Train Err: 72.6803 \t Test Err: 74.0005 \t baseline err: 141.4637\n", - "Epoch 15/1000 \t Train Err: 72.7032 \t Test Err: 73.0177 \t baseline err: 141.4637\n", - "Epoch 16/1000 \t Train Err: 72.7891 \t Test Err: 75.1899 \t baseline err: 141.4637\n", - "Epoch 17/1000 \t Train Err: 74.0133 \t Test Err: 71.7237 \t baseline err: 141.4637\n", - "Epoch 18/1000 \t Train Err: 72.7520 \t Test Err: 75.8566 \t baseline err: 141.4637\n", - "Epoch 19/1000 \t Train Err: 72.5771 \t Test Err: 74.9531 \t baseline err: 141.4637\n", - "Epoch 20/1000 \t Train Err: 72.6114 \t Test Err: 73.3918 \t baseline err: 141.4637\n", - "Epoch 21/1000 \t Train Err: 71.5844 \t Test Err: 57.3829 \t baseline err: 141.4637\n", - "Epoch 22/1000 \t Train Err: 56.8166 \t Test Err: 60.2253 \t baseline err: 141.4637\n", - "Epoch 23/1000 \t Train Err: 58.2172 \t Test Err: 56.7333 \t baseline err: 141.4637\n", - "Epoch 24/1000 \t Train Err: 56.1189 \t Test Err: 55.7485 \t baseline err: 141.4637\n", - "Epoch 25/1000 \t Train Err: 55.5304 \t Test Err: 56.2083 \t baseline err: 141.4637\n", - "Epoch 26/1000 \t Train Err: 68.7059 \t Test Err: 72.6976 \t baseline err: 141.4637\n", - "Epoch 27/1000 \t Train Err: 72.7020 \t Test Err: 73.1029 \t baseline err: 141.4637\n", - "Epoch 28/1000 \t Train Err: 72.4459 \t Test Err: 73.5617 \t baseline err: 141.4637\n", - "Epoch 29/1000 \t Train Err: 72.5310 \t Test Err: 75.8304 \t baseline err: 141.4637\n", - "Epoch 30/1000 \t Train Err: 72.5256 \t Test Err: 73.0845 \t baseline err: 141.4637\n", - "Epoch 31/1000 \t Train Err: 72.4667 \t Test Err: 72.9080 \t baseline err: 141.4637\n", - "Epoch 32/1000 \t Train Err: 72.5369 \t Test Err: 72.6703 \t baseline err: 141.4637\n", - "Epoch 33/1000 \t Train Err: 72.4685 \t Test Err: 74.7614 \t baseline err: 141.4637\n", - "Epoch 34/1000 \t Train Err: 72.4926 \t Test Err: 74.0886 \t baseline err: 141.4637\n", - "Epoch 35/1000 \t Train Err: 71.3339 \t Test Err: 55.4380 \t baseline err: 141.4637\n", - "Epoch 36/1000 \t Train Err: 60.7870 \t Test Err: 59.4468 \t baseline err: 141.4637\n", - "Epoch 37/1000 \t Train Err: 55.6557 \t Test Err: 56.7001 \t baseline err: 141.4637\n", - "Epoch 38/1000 \t Train Err: 55.4896 \t Test Err: 55.8308 \t baseline err: 141.4637\n", - "Epoch 39/1000 \t Train Err: 55.6962 \t Test Err: 58.9664 \t baseline err: 141.4637\n", - "Epoch 40/1000 \t Train Err: 55.5519 \t Test Err: 57.7560 \t baseline err: 141.4637\n", - "Epoch 41/1000 \t Train Err: 55.5370 \t Test Err: 56.6866 \t baseline err: 141.4637\n", - "Epoch 42/1000 \t Train Err: 55.4300 \t Test Err: 56.3424 \t baseline err: 141.4637\n", - "Epoch 43/1000 \t Train Err: 55.4922 \t Test Err: 56.3748 \t baseline err: 141.4637\n", - "Epoch 44/1000 \t Train Err: 55.6073 \t Test Err: 59.0728 \t baseline err: 141.4637\n", - "Epoch 45/1000 \t Train Err: 55.5497 \t Test Err: 58.5533 \t baseline err: 141.4637\n", - "Epoch 46/1000 \t Train Err: 55.4837 \t Test Err: 57.2847 \t baseline err: 141.4637\n", - "Epoch 47/1000 \t Train Err: 55.4173 \t Test Err: 57.1441 \t baseline err: 141.4637\n", - "Epoch 48/1000 \t Train Err: 55.4576 \t Test Err: 55.7806 \t baseline err: 141.4637\n", - "Epoch 49/1000 \t Train Err: 55.5678 \t Test Err: 56.6457 \t baseline err: 141.4637\n", - "Epoch 50/1000 \t Train Err: 55.5537 \t Test Err: 60.0365 \t baseline err: 141.4637\n", - "Epoch 51/1000 \t Train Err: 55.5123 \t Test Err: 55.6848 \t baseline err: 141.4637\n", - "Epoch 52/1000 \t Train Err: 55.5872 \t Test Err: 55.8084 \t baseline err: 141.4637\n", - "Epoch 53/1000 \t Train Err: 55.4548 \t Test Err: 56.5655 \t baseline err: 141.4637\n", - "Epoch 54/1000 \t Train Err: 55.5124 \t Test Err: 56.3470 \t baseline err: 141.4637\n", - "Epoch 55/1000 \t Train Err: 55.4518 \t Test Err: 57.6169 \t baseline err: 141.4637\n", - "Epoch 56/1000 \t Train Err: 55.4073 \t Test Err: 55.6467 \t baseline err: 141.4637\n", - "Epoch 57/1000 \t Train Err: 55.4745 \t Test Err: 56.3436 \t baseline err: 141.4637\n", - "Epoch 58/1000 \t Train Err: 55.4862 \t Test Err: 56.2289 \t baseline err: 141.4637\n", - "Epoch 59/1000 \t Train Err: 55.5221 \t Test Err: 55.3599 \t baseline err: 141.4637\n", - "Epoch 60/1000 \t Train Err: 55.4843 \t Test Err: 55.3953 \t baseline err: 141.4637\n", - "Epoch 61/1000 \t Train Err: 55.5095 \t Test Err: 56.4781 \t baseline err: 141.4637\n", - "Epoch 62/1000 \t Train Err: 55.6532 \t Test Err: 56.4005 \t baseline err: 141.4637\n", - "Epoch 63/1000 \t Train Err: 55.5240 \t Test Err: 57.4780 \t baseline err: 141.4637\n", - "Epoch 64/1000 \t Train Err: 55.4915 \t Test Err: 55.8880 \t baseline err: 141.4637\n", - "Epoch 65/1000 \t Train Err: 55.4006 \t Test Err: 56.1770 \t baseline err: 141.4637\n", - "Epoch 66/1000 \t Train Err: 55.3153 \t Test Err: 56.3041 \t baseline err: 141.4637\n", - "Epoch 67/1000 \t Train Err: 55.3105 \t Test Err: 55.7897 \t baseline err: 141.4637\n", - "Epoch 68/1000 \t Train Err: 55.9038 \t Test Err: 54.9242 \t baseline err: 141.4637\n", - "Epoch 69/1000 \t Train Err: 55.4002 \t Test Err: 55.2162 \t baseline err: 141.4637\n", - "Epoch 70/1000 \t Train Err: 55.5265 \t Test Err: 54.4618 \t baseline err: 141.4637\n", - "Epoch 71/1000 \t Train Err: 55.4598 \t Test Err: 56.2988 \t baseline err: 141.4637\n", - "Epoch 72/1000 \t Train Err: 55.4995 \t Test Err: 55.1318 \t baseline err: 141.4637\n", - "Epoch 73/1000 \t Train Err: 55.5224 \t Test Err: 55.6233 \t baseline err: 141.4637\n", - "Epoch 74/1000 \t Train Err: 55.2633 \t Test Err: 55.0628 \t baseline err: 141.4637\n", - "Epoch 75/1000 \t Train Err: 55.3569 \t Test Err: 54.9321 \t baseline err: 141.4637\n", - "Epoch 76/1000 \t Train Err: 55.4845 \t Test Err: 55.7232 \t baseline err: 141.4637\n", - "Epoch 77/1000 \t Train Err: 55.3814 \t Test Err: 54.6657 \t baseline err: 141.4637\n", - "Epoch 78/1000 \t Train Err: 55.4396 \t Test Err: 55.2952 \t baseline err: 141.4637\n", - "Epoch 79/1000 \t Train Err: 55.4018 \t Test Err: 55.4081 \t baseline err: 141.4637\n", - "Epoch 80/1000 \t Train Err: 55.5015 \t Test Err: 56.3544 \t baseline err: 141.4637\n", - "Epoch 81/1000 \t Train Err: 55.5352 \t Test Err: 55.8122 \t baseline err: 141.4637\n", - "Epoch 82/1000 \t Train Err: 55.4454 \t Test Err: 54.7959 \t baseline err: 141.4637\n", - "Epoch 83/1000 \t Train Err: 55.4375 \t Test Err: 55.1435 \t baseline err: 141.4637\n", - "Epoch 84/1000 \t Train Err: 55.4614 \t Test Err: 54.7396 \t baseline err: 141.4637\n", - "Epoch 85/1000 \t Train Err: 55.4046 \t Test Err: 55.3768 \t baseline err: 141.4637\n", - "Epoch 86/1000 \t Train Err: 55.3655 \t Test Err: 54.7487 \t baseline err: 141.4637\n", - "Epoch 87/1000 \t Train Err: 55.4036 \t Test Err: 55.0165 \t baseline err: 141.4637\n", - "Epoch 88/1000 \t Train Err: 55.4548 \t Test Err: 55.5787 \t baseline err: 141.4637\n", - "Epoch 89/1000 \t Train Err: 55.3973 \t Test Err: 54.7695 \t baseline err: 141.4637\n", - "Epoch 90/1000 \t Train Err: 55.4891 \t Test Err: 56.6628 \t baseline err: 141.4637\n", - "Epoch 91/1000 \t Train Err: 55.5870 \t Test Err: 56.8348 \t baseline err: 141.4637\n", - "Epoch 92/1000 \t Train Err: 55.4630 \t Test Err: 55.4178 \t baseline err: 141.4637\n", - "Epoch 93/1000 \t Train Err: 55.5218 \t Test Err: 55.8851 \t baseline err: 141.4637\n", - "Epoch 94/1000 \t Train Err: 55.4550 \t Test Err: 55.9211 \t baseline err: 141.4637\n", - "Epoch 95/1000 \t Train Err: 55.4727 \t Test Err: 56.5819 \t baseline err: 141.4637\n", - "Epoch 96/1000 \t Train Err: 55.4301 \t Test Err: 57.2222 \t baseline err: 141.4637\n", - "Epoch 97/1000 \t Train Err: 55.4108 \t Test Err: 55.3496 \t baseline err: 141.4637\n", - "Epoch 98/1000 \t Train Err: 55.4733 \t Test Err: 55.8675 \t baseline err: 141.4637\n", - "Epoch 99/1000 \t Train Err: 55.3536 \t Test Err: 56.2623 \t baseline err: 141.4637\n", - "Epoch 100/1000 \t Train Err: 55.2286 \t Test Err: 54.2883 \t baseline err: 141.4637\n", - "Epoch 101/1000 \t Train Err: 54.6294 \t Test Err: 54.3795 \t baseline err: 141.4637\n", - "Epoch 102/1000 \t Train Err: 54.0334 \t Test Err: 52.9438 \t baseline err: 141.4637\n", - "Epoch 103/1000 \t Train Err: 55.8557 \t Test Err: 55.9887 \t baseline err: 141.4637\n", - "Epoch 104/1000 \t Train Err: 55.3523 \t Test Err: 55.6809 \t baseline err: 141.4637\n", - "Epoch 105/1000 \t Train Err: 54.8650 \t Test Err: 54.1854 \t baseline err: 141.4637\n", - "Epoch 106/1000 \t Train Err: 54.8108 \t Test Err: 54.9449 \t baseline err: 141.4637\n", - "Epoch 107/1000 \t Train Err: 54.4932 \t Test Err: 53.3353 \t baseline err: 141.4637\n", - "Epoch 108/1000 \t Train Err: 54.0328 \t Test Err: 54.7242 \t baseline err: 141.4637\n", - "Epoch 109/1000 \t Train Err: 52.3047 \t Test Err: 50.1951 \t baseline err: 141.4637\n", - "Epoch 110/1000 \t Train Err: 46.5255 \t Test Err: 36.4212 \t baseline err: 141.4637\n", - "Epoch 111/1000 \t Train Err: 35.6437 \t Test Err: 36.2409 \t baseline err: 141.4637\n", - "Epoch 112/1000 \t Train Err: 35.5794 \t Test Err: 36.0152 \t baseline err: 141.4637\n", - "Epoch 113/1000 \t Train Err: 49.8337 \t Test Err: 56.2286 \t baseline err: 141.4637\n", - "Epoch 114/1000 \t Train Err: 55.4618 \t Test Err: 55.5159 \t baseline err: 141.4637\n", - "Epoch 115/1000 \t Train Err: 48.2926 \t Test Err: 37.0193 \t baseline err: 141.4637\n", - "Epoch 116/1000 \t Train Err: 43.0000 \t Test Err: 42.3349 \t baseline err: 141.4637\n", - "Epoch 117/1000 \t Train Err: 36.4887 \t Test Err: 38.2387 \t baseline err: 141.4637\n", - "Epoch 118/1000 \t Train Err: 35.7809 \t Test Err: 37.3943 \t baseline err: 141.4637\n", - "Epoch 119/1000 \t Train Err: 35.7078 \t Test Err: 37.0414 \t baseline err: 141.4637\n", - "Epoch 120/1000 \t Train Err: 35.7773 \t Test Err: 37.2562 \t baseline err: 141.4637\n", - "Epoch 121/1000 \t Train Err: 36.1376 \t Test Err: 38.1538 \t baseline err: 141.4637\n", - "Epoch 122/1000 \t Train Err: 38.3734 \t Test Err: 38.6760 \t baseline err: 141.4637\n", - "Epoch 123/1000 \t Train Err: 36.6591 \t Test Err: 38.0746 \t baseline err: 141.4637\n", - "Epoch 124/1000 \t Train Err: 37.1041 \t Test Err: 38.8434 \t baseline err: 141.4637\n", - "Epoch 125/1000 \t Train Err: 37.0860 \t Test Err: 37.3192 \t baseline err: 141.4637\n", - "Epoch 126/1000 \t Train Err: 35.8674 \t Test Err: 36.7553 \t baseline err: 141.4637\n", - "Epoch 127/1000 \t Train Err: 35.8025 \t Test Err: 36.0833 \t baseline err: 141.4637\n", - "Epoch 128/1000 \t Train Err: 35.6595 \t Test Err: 36.1782 \t baseline err: 141.4637\n", - "Epoch 129/1000 \t Train Err: 35.6861 \t Test Err: 36.1815 \t baseline err: 141.4637\n", - "Epoch 130/1000 \t Train Err: 35.5056 \t Test Err: 36.4077 \t baseline err: 141.4637\n", - "Epoch 131/1000 \t Train Err: 35.5161 \t Test Err: 36.6100 \t baseline err: 141.4637\n", - "Epoch 132/1000 \t Train Err: 35.4981 \t Test Err: 36.1938 \t baseline err: 141.4637\n", - "Epoch 133/1000 \t Train Err: 35.4577 \t Test Err: 36.2723 \t baseline err: 141.4637\n", - "Epoch 134/1000 \t Train Err: 35.5685 \t Test Err: 36.0326 \t baseline err: 141.4637\n", - "Epoch 135/1000 \t Train Err: 35.4790 \t Test Err: 36.0421 \t baseline err: 141.4637\n", - "Epoch 136/1000 \t Train Err: 35.5135 \t Test Err: 35.9383 \t baseline err: 141.4637\n", - "Epoch 137/1000 \t Train Err: 35.4027 \t Test Err: 35.5105 \t baseline err: 141.4637\n", - "Epoch 138/1000 \t Train Err: 35.4036 \t Test Err: 35.1535 \t baseline err: 141.4637\n", - "Epoch 139/1000 \t Train Err: 35.5047 \t Test Err: 35.7687 \t baseline err: 141.4637\n", - "Epoch 140/1000 \t Train Err: 35.3858 \t Test Err: 35.5093 \t baseline err: 141.4637\n", - "Epoch 141/1000 \t Train Err: 35.3629 \t Test Err: 35.1772 \t baseline err: 141.4637\n", - "Epoch 142/1000 \t Train Err: 35.3714 \t Test Err: 35.0682 \t baseline err: 141.4637\n", - "Epoch 143/1000 \t Train Err: 35.3976 \t Test Err: 35.6668 \t baseline err: 141.4637\n", - "Epoch 144/1000 \t Train Err: 35.4523 \t Test Err: 35.2633 \t baseline err: 141.4637\n", - "Epoch 145/1000 \t Train Err: 35.3763 \t Test Err: 35.5053 \t baseline err: 141.4637\n", - "Epoch 146/1000 \t Train Err: 35.3906 \t Test Err: 35.1866 \t baseline err: 141.4637\n", - "Epoch 147/1000 \t Train Err: 35.4717 \t Test Err: 35.2663 \t baseline err: 141.4637\n", - "Epoch 148/1000 \t Train Err: 49.5998 \t Test Err: 54.9490 \t baseline err: 141.4637\n", - "Epoch 149/1000 \t Train Err: 56.0901 \t Test Err: 55.1923 \t baseline err: 141.4637\n", - "Epoch 150/1000 \t Train Err: 55.4467 \t Test Err: 54.8896 \t baseline err: 141.4637\n", - "Epoch 151/1000 \t Train Err: 55.4050 \t Test Err: 55.0999 \t baseline err: 141.4637\n", - "Epoch 152/1000 \t Train Err: 55.3775 \t Test Err: 55.0012 \t baseline err: 141.4637\n", - "Epoch 153/1000 \t Train Err: 55.3564 \t Test Err: 55.1625 \t baseline err: 141.4637\n", - "Epoch 154/1000 \t Train Err: 55.4071 \t Test Err: 55.5768 \t baseline err: 141.4637\n", - "Epoch 155/1000 \t Train Err: 55.1633 \t Test Err: 55.3753 \t baseline err: 141.4637\n", - "Epoch 156/1000 \t Train Err: 45.2929 \t Test Err: 37.6036 \t baseline err: 141.4637\n", - "Epoch 157/1000 \t Train Err: 36.1442 \t Test Err: 35.6718 \t baseline err: 141.4637\n", - "Epoch 158/1000 \t Train Err: 35.5764 \t Test Err: 35.4595 \t baseline err: 141.4637\n", - "Epoch 159/1000 \t Train Err: 35.3944 \t Test Err: 35.3251 \t baseline err: 141.4637\n" + "Epoch 48/1000 \t Train Err: 81.3666 \t Test Err: 82.1752\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.38it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 49/1000 \t Train Err: 81.1630 \t Test Err: 82.7047\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.31it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 50/1000 \t Train Err: 81.3882 \t Test Err: 85.8777\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.38it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 51/1000 \t Train Err: 81.4415 \t Test Err: 83.4058\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.38it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 52/1000 \t Train Err: 81.2446 \t Test Err: 82.6877\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.33it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 53/1000 \t Train Err: 81.3113 \t Test Err: 82.0156\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.31it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 54/1000 \t Train Err: 81.3483 \t Test Err: 81.1088\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.33it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 55/1000 \t Train Err: 81.3773 \t Test Err: 81.1178\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.35it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 56/1000 \t Train Err: 81.0823 \t Test Err: 83.9259\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.34it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 57/1000 \t Train Err: 81.6416 \t Test Err: 81.8139\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.34it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 58/1000 \t Train Err: 81.9228 \t Test Err: 81.7897\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████| 32/32 [00:09<00:00, 3.33it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 59/1000 \t Train Err: 81.3041 \t Test Err: 79.5053\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 25%|███████████ | 8/32 [00:02<00:07, 3.32it/s]" ] } ], @@ -713,11 +1319,12 @@ "for epoch in range(NEPOCHS):\n", " model.train()\n", " train_loss = 0\n", - " for batch_src, batch_labels, batch_padding_mask in train_loader:\n", + " for i in tqdm(range(BPE)):\n", + " batch_src, batch_labels, batch_padding_mask = mkbatch(BSZ)\n", " optimizer.zero_grad()\n", " output = model(batch_src, batch_padding_mask)\n", " loss = criterion(output.squeeze(1), batch_labels)\n", - " train_loss += loss.item()/len(train_loader)\n", + " train_loss += loss.item() / BPEREPOCH\n", " loss.backward()\n", " optimizer.step()\n", "\n", @@ -725,12 +1332,12 @@ " \n", " test_err.append(test_loss)\n", " train_err.append(train_loss)\n", + " print(f\"Epoch {epoch + 1}/{NEPOCHS} \\t Train Err: {train_loss:.4f} \\t Test Err: {test_loss:.4f}\")\n", " ax.plot(train_err, label='Train', color='blue')\n", " ax.plot(test_err, label='Test', color='red')\n", " ax.set_xlabel('Epochs')\n", " ax.set_ylabel('MSE')\n", " fig.canvas.draw()\n", - " print(f\"Epoch {epoch + 1}/{NEPOCHS} \\t Train Err: {train_loss:.4f} \\t Test Err: {test_loss:.4f} \\t baseline err: {baseline_error:.4f}\")\n", "\n", " if epoch % 100 == 99:\n", " torch.save(model.state_dict(), f\"model_weights_{epoch}.pth\")" @@ -841,21 +1448,9 @@ "outputs": [], "source": [ "N_TUNE_EPOCHS = 100\n", - "TUNE_BSZ = 1024\n", "TUNE_LR = 0.003\n", "TUNE_WD = 0.002\n", "\n", - "with open(\"tune_data.pkl\", \"rb\") as f:\n", - " pickled_tune_stuff = pickle.load(f)\n", - "\n", - "tune_data = pickled_tune_stuff[\"data\"].to(device)\n", - "tune_label = pickled_tune_stuff[\"labels\"].to(device)\n", - "tune_padding_mask = (tune_data == PAD_TOKEN).bool().to(device)\n", - "tune_dataset = TensorDataset(tune_data, tune_label, tune_padding_mask)\n", - "tune_train_dataset, tune_test_dataset = torch.utils.data.random_split(tune_dataset, [.8, .2])\n", - "tune_train_loader = DataLoader(tune_train_dataset, batch_size=TUNE_BSZ, shuffle=True)\n", - "tune_test_loader = DataLoader(tune_test_dataset, batch_size=TUNE_BSZ, shuffle=True)\n", - "\n", "tune_criterion = nn.MSELoss()\n", "tune_optimizer = torch.optim.Adam(model.parameters(), lr=TUNE_LR, weight_decay=TUNE_WD)" ] @@ -867,11 +1462,29 @@ "metadata": {}, "outputs": [], "source": [ + "def tuneevaluate():\n", + " model.eval()\n", + " test_loss = 0\n", + " with torch.no_grad():\n", + " batch_src, batch_labels, batch_padding_mask = mktunebatch(BSZ)\n", + " output = model(batch_src, batch_padding_mask)\n", + " loss = criterion(output.squeeze(1), batch_labels)\n", + " return loss.item()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "execution_state": "running", + "metadata": {}, + "outputs": [], + "source": [ "# This has to be in a separate cell for some weird event loop reasons\n", "%matplotlib widget\n", "fig,ax = plt.subplots()\n", "fig.suptitle('MSE vs Epochs')\n", - "plt.show()" + "plt.show()\n", + "%matplotlib inline" ] }, { @@ -881,40 +1494,33 @@ "metadata": {}, "outputs": [], "source": [ - "ax.clear()\n", - "\n", "tune_train_err = []\n", "tune_test_err = []\n", "\n", "for epoch in range(N_TUNE_EPOCHS):\n", " model.train()\n", - " tune_train_loss = 0\n", - " for batch_src, batch_labels, batch_padding_mask in tune_train_loader:\n", + " train_loss = 0\n", + " for i in tqdm(range(BPE)):\n", + " batch_src, batch_labels, batch_padding_mask = mktunebatch(BSZ)\n", " optimizer.zero_grad()\n", " output = model(batch_src, batch_padding_mask)\n", " loss = criterion(output.squeeze(1), batch_labels)\n", - " tune_train_loss += loss.item()/len(tune_train_loader)\n", + " train_loss += loss.item()/BPE\n", " loss.backward()\n", " optimizer.step()\n", "\n", - " model.eval()\n", - " tune_test_loss = 0\n", - " with torch.no_grad():\n", - " for batch_src, batch_labels, batch_padding_mask in tune_test_loader:\n", - " output = model(batch_src, batch_padding_mask)\n", - " loss = criterion(output.squeeze(1), batch_labels)\n", - " tune_test_loss += loss.item()/len(tune_test_loader)\n", - " \n", - " tune_test_err.append(tune_test_loss)\n", - " tune_train_err.append(tune_train_loss)\n", + " test_loss = tuneevaluate()\n", + " \n", + " tune_test_err.append(test_loss)\n", + " tune_train_err.append(train_loss)\n", " ax.plot(tune_train_err, label='Train', color='blue')\n", " ax.plot(tune_test_err, label='Test', color='red')\n", " ax.set_xlabel('Epochs')\n", " ax.set_ylabel('MSE')\n", " fig.canvas.draw()\n", - " print(f\"Epoch {epoch + 1}/{NEPOCHS} \\t Train Err: {train_loss:.4f} \\t Test Err: {test_loss:.4f} \\t baseline err: {baseline_error:.4f}\")\n", + " print(f\"Epoch {epoch + 1}/{NEPOCHS} \\t Train Err: {train_loss:.4f} \\t Test Err: {test_loss:.4f}\")\n", "\n", - " if epoch % 100 == 9:\n", + " if epoch % 10 == 9:\n", " torch.save(model.state_dict(), f\"tune_model_weights_{epoch}.pth\")" ] }, |