aboutsummaryrefslogtreecommitdiff
path: root/transformer_shortest_paths.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'transformer_shortest_paths.ipynb')
-rw-r--r--transformer_shortest_paths.ipynb947
1 files changed, 593 insertions, 354 deletions
diff --git a/transformer_shortest_paths.ipynb b/transformer_shortest_paths.ipynb
index ee844fb..1c6cdc6 100644
--- a/transformer_shortest_paths.ipynb
+++ b/transformer_shortest_paths.ipynb
@@ -11,7 +11,8 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": 20,
+ "execution_state": "idle",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
@@ -19,53 +20,46 @@
"id": "ge5QvElvhCOw",
"outputId": "c7cdaefa-d6dc-44ad-c258-e4fb2aca97a5"
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "imports complete\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
- "# imports\n",
- "import numpy as np\n",
"from collections import deque\n",
"import pickle\n",
"from tqdm import tqdm\n",
- "np.random.seed(42)\n",
"\n",
"import torch\n",
"import torch.nn as nn\n",
"import pickle\n",
"from math import sqrt\n",
"from torch.utils.data import DataLoader, TensorDataset\n",
+ "%matplotlib widget\n",
"import matplotlib.pyplot as plt\n",
"torch.manual_seed(42)\n",
"\n",
"import os\n",
+ "from IPython.display import clear_output\n",
+ "import ipdb\n",
"\n",
- "print(\"imports complete\")"
+ "import random\n",
+ "random.seed(42)"
]
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 13,
+ "execution_state": "idle",
"metadata": {
"id": "lylOX2POPwFL"
},
"outputs": [],
"source": [
- "SEQ_LEN = 32\n",
- "\n",
+ "SEQ_LEN = 65 # means 32 edges, final token is the target vertex\n",
"PAD_TOKEN = 0\n",
"AVG_DEG = 2\n",
- "MAX_VTXS = SEQ_LEN//AVG_DEG - 1\n",
+ "MAX_VTXS = SEQ_LEN//AVG_DEG - 1 # 31\n",
+ "MIN_VTXS = 8\n",
+ "MAX_TUNE_VTXS = 16\n",
"# vertices are labelled 1,2,...,63\n",
- "# we also have a padding token which is 0.\n",
- "\n",
- "INF = MAX_VTXS # represents unreachability"
+ "# we also have a padding token which is 0."
]
},
{
@@ -79,7 +73,8 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 15,
+ "execution_state": "idle",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
@@ -92,30 +87,26 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "100%|██████████| 1/1 [00:14<00:00, 14.42s/it]\n"
+ "100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 23/23 [00:06<00:00, 3.52it/s]\n"
]
}
],
"source": [
"# original task data\n",
- "NTRAIN1 = 100_000\n",
+ "NTRAIN1 = 300_000\n",
"# the data will be edge lists\n",
- "# like this: [1 3 1 5 2 4 0 0 0 0]\n",
+ "# like this: [1 3 1 5 2 4 0 0 0 0 2]\n",
"# this represents edges (1,3), (1,5) (2,4)\n",
"# (the zeros are just padding tokens)\n",
+ "# the final 2 means which vertex we're going to \n",
"\n",
"# the label is the shortest distance from vtx 1 to vtx 2\n",
- "# or \"INF\" if no path exists\n",
- "\n",
- "# fine tuning data\n",
- "NTRAIN2 = 2000\n",
- "# I haven't totally figured out how to do the fine tuning yet.\n",
- "# So don't worry about this yet.\n",
+ "# or \"number of vertices\" if no path exists\n",
"\n",
"def random_graph(n):\n",
" edge_list = []\n",
" adjacencies = [set() for _ in range(n+1)]\n",
- " indices = np.random.randint(n, size=(AVG_DEG*(n-1)))+1\n",
+ " indices = [random.randint(1, n-1) for _ in range(AVG_DEG * (n-1))]\n",
" for i in range(0, len(indices), 2):\n",
" u = indices[i]\n",
" v = indices[i + 1]\n",
@@ -124,28 +115,23 @@
" adjacencies[u].add(v)\n",
" adjacencies[v].add(u)\n",
"\n",
- " if np.random.random() < 0.25:\n",
- " edge_list += [1,2]\n",
- " adjacencies[1].add(2)\n",
- " adjacencies[2].add(1)\n",
- "\n",
" edge_list += [PAD_TOKEN]*(SEQ_LEN-len(edge_list))\n",
" return edge_list, adjacencies\n",
"\n",
"\"\"\"\n",
"input: G, represented as an adjacency list\n",
- "output: [INF]+[d(1,i) for i in range(n)] if target=None\n",
+ "output: [number of vertices]+[d(1,i) for i in range(n)] if target=None\n",
"if target is set to some value, then we instead just output that specific distance\n",
"\"\"\"\n",
- "def SSSP(G, target=None):\n",
- " dist = [INF for _ in G]\n",
+ "def SSSP(n, G, target=2):\n",
+ " dist = [n for _ in G]\n",
" dist[1] = 0\n",
" frontier = deque()\n",
" frontier.append(1)\n",
" while len(frontier) > 0:\n",
" vtx = frontier.popleft()\n",
" for x in G[vtx]:\n",
- " if dist[x] == INF:\n",
+ " if dist[x] == n:\n",
" dist[x] = 1 + dist[vtx]\n",
" frontier.append(x)\n",
" if x == target:\n",
@@ -155,159 +141,190 @@
" else:\n",
" return dist\n",
"\n",
- "def fake_SSSP(G, target=None):\n",
- " return 2 in G[1]\n",
- "\n",
"graphs1 = []\n",
"distance1 = []\n",
"\n",
- "graphs2 = []\n",
- "distances2 = []\n",
- "\n",
- "for n in tqdm(range(MAX_VTXS-1, MAX_VTXS)):\n",
- " # for _ in range(NTRAIN1//MAX_VTXS):\n",
- " for _ in range(NTRAIN1):\n",
+ "for n in tqdm(range(MIN_VTXS, MAX_VTXS)):\n",
+ " for _ in range(NTRAIN1//(MAX_VTXS - MIN_VTXS)):\n",
" edge_list, adj_list = random_graph(n)\n",
- " dist = SSSP(adj_list, target=2)\n",
- "\n",
+ " dist = SSSP(n, adj_list)\n",
+ " edge_list[-1] = 2 # target token\n",
" graphs1.append(edge_list)\n",
" distance1.append(dist)\n",
"\n",
- "# for n in range(8, MAX_VTXS//4):\n",
- "# for _ in range(NTRAIN2//MAX_VTXS):\n",
- "# edge_list, adj_list = random_graph(n)\n",
- "# distances = SSSP(adj_list)\n",
- "# graphs2.append(edge_list)\n",
- "# distances2.append(distances)\n",
- "\n",
- "split1 = int(len(graphs1)*3/4)\n",
- "split2 = int(len(graphs2)*3/4)\n",
- "\n",
- "all1 = list(zip(graphs1, distance1))\n",
- "np.random.shuffle(all1)\n",
- "graphs1, distance1 = zip(*all1)\n",
- "\n",
"data = {\n",
- " \"train1-data\": graphs1[:split1],\n",
- " \"train1-labels\": distance1[:split1],\n",
- " \"test1-data\": graphs1[split1:],\n",
- " \"test1-labels\": distance1[split1:]\n",
- " # \"train2-data\": graphs2[:split2],\n",
- " # \"train2-labels\": distances2[:split2],\n",
- " # \"test2-data\": graphs2[split2:],\n",
- " # \"test2-labels\": distances2[split2:]\n",
+ " \"data\": torch.tensor(graphs1),\n",
+ " \"labels\": torch.tensor(distance1, dtype=torch.float32)\n",
"}\n",
"\n",
"with open('data.pkl', 'wb') as file:\n",
- " pickle.dump(data, file)\n",
- "\n"
+ " pickle.dump(data, file)"
]
},
{
"cell_type": "code",
- "execution_count": 74,
+ "execution_count": 16,
+ "execution_state": "idle",
"metadata": {},
+ "outputs": [],
+ "source": [
+ "def vertices_on_shortest_12_path(n, G, target=2):\n",
+ " dist = [n for _ in G]\n",
+ " parent = [-1 for _ in G]\n",
+ " dist[1] = 0\n",
+ " frontier = deque()\n",
+ " frontier.append(1)\n",
+ " while len(frontier) > 0:\n",
+ " vtx = frontier.popleft()\n",
+ " for x in G[vtx]:\n",
+ " if dist[x] == n:\n",
+ " parent[x] = vtx\n",
+ " dist[x] = 1 + dist[vtx]\n",
+ " frontier.append(x)\n",
+ " if x == target:\n",
+ " path = [x]\n",
+ " while parent[x] != -1:\n",
+ " x = parent[x]\n",
+ " path.append(x)\n",
+ " return list(reversed(path))\n",
+ " return []"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "execution_state": "idle",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# fine tuning data\n",
+ "NTRAIN2 = 2000\n",
+ "\n",
+ "graphs2 = []\n",
+ "distance2 = []\n",
+ "\n",
+ "for n in range(MIN_VTXS, MAX_TUNE_VTXS):\n",
+ " for _ in range(NTRAIN2//(MAX_TUNE_VTXS - MIN_VTXS)):\n",
+ " while True:\n",
+ " edge_list, adj_list = random_graph(n)\n",
+ " path = vertices_on_shortest_12_path(n, adj_list)\n",
+ " if len(path) > 1:\n",
+ " target_vtx_idx = random.randrange(1, len(path))\n",
+ " target_vtx = path[target_vtx_idx]\n",
+ " edge_list[-1] = target_vtx\n",
+ " graphs2.append(edge_list)\n",
+ " distance2.append(target_vtx_idx)\n",
+ " break\n",
+ "\n",
+ "tune_data = {\n",
+ " \"data\": torch.tensor(graphs2),\n",
+ " \"labels\": torch.tensor(distance2, dtype=torch.float32)\n",
+ "}\n",
+ "\n",
+ "with open('tune_data.pkl', 'wb') as file:\n",
+ " pickle.dump(tune_data, file)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "execution_state": "idle",
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "EpDBxcgaIPpJ",
+ "outputId": "37cf9577-8cd8-444c-ec1a-c6f4b6061b7f"
+ },
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "torch.Size([75000, 32])\n",
- "DONE\n"
+ "pre-train dataset size = 149MB\n",
+ "fine-tune dataset = 1MB\n"
]
}
],
"source": [
- "NTRAIN1 = 100000\n",
- "\n",
- "graphs1 = torch.randint(1, MAX_VTXS, (NTRAIN1, SEQ_LEN))\n",
- "\n",
- "# check if token 1 is in the graph\n",
- "def silly_distance(graph):\n",
- " return int(1 in graph)\n",
- "\n",
- "# check if both token 1 and token 2 are in the graph\n",
- "def silly_distance2(graph):\n",
- " return int(1 in graph and 2 in graph and 3 in graph and 4 in graph and 5 in graph)\n",
- "\n",
- "def silly_distance3(graph):\n",
- " for i in range(len(graph)//2):\n",
- " if graph[2*i] + graph[2*i+1] == 3:\n",
- " return 1\n",
- " return 0\n",
- "\n",
- "distance1 = [silly_distance3(graph) for graph in graphs1]\n",
- "\n",
- "split1 = int(len(graphs1)*3/4)\n",
- "\n",
- "data = {\n",
- " \"train1-data\": graphs1[:split1],\n",
- " \"train1-labels\": distance1[:split1],\n",
- " \"test1-data\": graphs1[split1:],\n",
- " \"test1-labels\": distance1[split1:]\n",
- "}\n",
- "\n",
- "print(data[\"train1-data\"].shape)\n",
- "\n",
- "with open('data.pkl', 'wb') as file:\n",
- " pickle.dump(data, file)\n",
- "\n",
- "print(\"DONE\")\n"
+ "print(f\"pre-train dataset size = {os.path.getsize('data.pkl')//(1024*1024)}MB\")\n",
+ "print(f\"fine-tune dataset = {os.path.getsize('tune_data.pkl')//(1024*1024)}MB\")"
]
},
{
"cell_type": "code",
- "execution_count": 76,
- "metadata": {
- "scrolled": true
- },
+ "execution_count": 38,
+ "execution_state": "idle",
+ "metadata": {},
"outputs": [
{
"data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "f5d5ab87fe4145eb8728e6d950e749d8",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAl3klEQVR4nO3df4xV9YH//xegM/iDGUSFkQJKa1dlFYwgMNutn1pZR0ubumKCrWmpUhvdgRRmq0jXgjZNaGh2q11UdmO29I9Sf2xWu8oKJVgxu079gUsKbiGtMYEGB+gPZpTKD5n7/WPL/TqVpfUHcwfej0dyE+ec9z33fd89zTxz5p5Lv0qlUgkAAMXoX+sJAADQuwQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhjqv1BI5m3d3d2bZtWwYNGpR+/frVejoAwJ+gUqnktddey/Dhw9O/f5nXwgTge7Bt27aMHDmy1tMAAN6FrVu3ZsSIEbWeRk0IwPdg0KBBye9PoIaGhlpPBwD4E3R1dWXkyJHV3+MlEoDvwcE/+zY0NAhAADjKlPzxrTL/8A0AUDABCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQmONqPQGOgDsaD7OvszdnAgD0Qa4AAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAUpqYB+M1vfjP9+vXLnDlzqtv27NmT1tbWnHrqqTn55JMzbdq0bN++vcfztmzZkqlTp+bEE0/M0KFDc8stt+TNN9/sMeapp57KRRddlPr6+px99tlZtmzZ217/nnvuyVlnnZWBAwdm0qRJee65547guwUA6BtqFoDPP/98/umf/iljx47tsX3u3Ll57LHH8vDDD2ft2rXZtm1brr766ur+AwcOZOrUqdm3b1+eeeaZfO9738uyZcuyYMGC6phXXnklU6dOzaWXXpr169dnzpw5+eIXv5hVq1ZVxzz44INpa2vLwoUL8+KLL2bcuHFpaWnJjh07emkFAABqo1+lUqn09ou+/vrrueiii3LvvffmG9/4Ri688MLcdddd6ezszOmnn57ly5fnmmuuSZJs2rQp5513Xtrb2zN58uQ88cQT+eQnP5lt27Zl2LBhSZKlS5dm3rx52blzZ+rq6jJv3rysWLEiGzdurL7mtddem127dmXlypVJkkmTJuXiiy/OkiVLkiTd3d0ZOXJkZs+endtuu+1Peh9dXV1pbGxMZ2dnGhoajsBKvUt3NB5mX2dvzgQA+pw++/u7F9XkCmBra2umTp2aKVOm9Ni+bt267N+/v8f2c889N6NGjUp7e3uSpL29PRdccEE1/pKkpaUlXV1deemll6pj/vDYLS0t1WPs27cv69at6zGmf//+mTJlSnXMoezduzddXV09HgAAR5vjevsFH3jggbz44ot5/vnn37avo6MjdXV1GTx4cI/tw4YNS0dHR3XMW+Pv4P6D+w43pqurK2+88UZ++9vf5sCBA4ccs2nTpv9z7osWLcqdd975jt8zAEBf0qtXALdu3Zovf/nL+f73v5+BAwf25ku/L+bPn5/Ozs7qY+vWrbWeEgDAO9arVwDXrVuXHTt25KKLLqpuO3DgQJ5++uksWbIkq1atyr59+7Jr164eVwG3b9+epqamJElTU9Pb7tY9eJfwW8f84Z3D27dvT0NDQ0444YQMGDAgAwYMOOSYg8c4lPr6+tTX17+nNejTfHYQAIrQq1cAL7vssmzYsCHr16+vPiZMmJDrrruu+t/HH3981qxZU33O5s2bs2XLljQ3NydJmpubs2HDhh53665evToNDQ0ZM2ZMdcxbj3FwzMFj1NXVZfz48T3GdHd3Z82aNdUxAADHql69Ajho0KCcf/75PbaddNJJOfXUU6vbZ86cmba2tgwZMiQNDQ2ZPXt2mpubM3ny5CTJ5ZdfnjFjxuRzn/tcFi9enI6Ojtx+++1pbW2tXp276aabsmTJktx666254YYb8uSTT+ahhx7KihUrqq/b1taWGTNmZMKECZk4cWLuuuuu7N69O9dff31vLgkAQK/r9ZtA/phvf/vb6d+/f6ZNm5a9e/empaUl9957b3X/gAED8vjjj+fmm29Oc3NzTjrppMyYMSNf//rXq2NGjx6dFStWZO7cubn77rszYsSI3H///WlpaamOmT59enbu3JkFCxako6MjF154YVauXPm2G0MAAI41NfkewGNFn/0eoXf7WT6fAQSgAH3293cv8m8BAwAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFOa4Wk+Aw7ij8TD7OntzJgDAMcQVQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgML0egDed999GTt2bBoaGtLQ0JDm5uY88cQT1f179uxJa2trTj311Jx88smZNm1atm/f3uMYW7ZsydSpU3PiiSdm6NChueWWW/Lmm2/2GPPUU0/loosuSn19fc4+++wsW7bsbXO55557ctZZZ2XgwIGZNGlSnnvuuSP4zgEA+oZeD8ARI0bkm9/8ZtatW5cXXnghH//4x/PpT386L730UpJk7ty5eeyxx/Lwww9n7dq12bZtW66++urq8w8cOJCpU6dm3759eeaZZ/K9730vy5Yty4IFC6pjXnnllUydOjWXXnpp1q9fnzlz5uSLX/xiVq1aVR3z4IMPpq2tLQsXLsyLL76YcePGpaWlJTt27OjlFQEA6F39KpVKpdaTGDJkSL71rW/lmmuuyemnn57ly5fnmmuuSZJs2rQp5513Xtrb2zN58uQ88cQT+eQnP5lt27Zl2LBhSZKlS5dm3rx52blzZ+rq6jJv3rysWLEiGzdurL7Gtddem127dmXlypVJkkmTJuXiiy/OkiVLkiTd3d0ZOXJkZs+endtuu+1PmndXV1caGxvT2dmZhoaG939h7mg8zL7OvvM8ADiKHPHf30eBmn4G8MCBA3nggQeye/fuNDc3Z926ddm/f3+mTJlSHXPuuedm1KhRaW9vT5K0t7fnggsuqMZfkrS0tKSrq6t6FbG9vb3HMQ6OOXiMffv2Zd26dT3G9O/fP1OmTKmOOZS9e/emq6urxwMA4GhTkwDcsGFDTj755NTX1+emm27KI488kjFjxqSjoyN1dXUZPHhwj/HDhg1LR0dHkqSjo6NH/B3cf3Df4cZ0dXXljTfeyK9+9ascOHDgkGMOHuNQFi1alMbGxupj5MiR73ElAAB6X00C8Jxzzsn69evz7LPP5uabb86MGTPyP//zP7WYyjsyf/78dHZ2Vh9bt26t9ZQAAN6x42rxonV1dTn77LOTJOPHj8/zzz+fu+++O9OnT8++ffuya9euHlcBt2/fnqampiRJU1PT2+7WPXiX8FvH/OGdw9u3b09DQ0NOOOGEDBgwIAMGDDjkmIPHOJT6+vrU19e/5/cPAFBLfeJ7ALu7u7N3796MHz8+xx9/fNasWVPdt3nz5mzZsiXNzc1Jkubm5mzYsKHH3bqrV69OQ0NDxowZUx3z1mMcHHPwGHV1dRk/fnyPMd3d3VmzZk11DADAsarXrwDOnz8/V155ZUaNGpXXXnsty5cvz1NPPZVVq1alsbExM2fOTFtbW4YMGZKGhobMnj07zc3NmTx5cpLk8ssvz5gxY/K5z30uixcvTkdHR26//fa0trZWr87ddNNNWbJkSW699dbccMMNefLJJ/PQQw9lxYoV1Xm0tbVlxowZmTBhQiZOnJi77roru3fvzvXXX9/bSwIA0Kt6PQB37NiRz3/+83n11VfT2NiYsWPHZtWqVfmrv/qrJMm3v/3t9O/fP9OmTcvevXvT0tKSe++9t/r8AQMG5PHHH8/NN9+c5ubmnHTSSZkxY0a+/vWvV8eMHj06K1asyNy5c3P33XdnxIgRuf/++9PS0lIdM3369OzcuTMLFixIR0dHLrzwwqxcufJtN4YAABxr+sT3AB6tfA8gABx9fA9gH/kMIAAAvUcAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAU5rhaT4BjgH9DGACOKq4AAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAUptcDcNGiRbn44oszaNCgDB06NFdddVU2b97cY8yePXvS2tqaU089NSeffHKmTZuW7du39xizZcuWTJ06NSeeeGKGDh2aW265JW+++WaPMU899VQuuuii1NfX5+yzz86yZcveNp977rknZ511VgYOHJhJkyblueeeO0LvHACgb+j1AFy7dm1aW1vzk5/8JKtXr87+/ftz+eWXZ/fu3dUxc+fOzWOPPZaHH344a9euzbZt23L11VdX9x84cCBTp07Nvn378swzz+R73/teli1blgULFlTHvPLKK5k6dWouvfTSrF+/PnPmzMkXv/jFrFq1qjrmwQcfTFtbWxYuXJgXX3wx48aNS0tLS3bs2NGLKwIA0Lv6VSqVSi0nsHPnzgwdOjRr167NJZdcks7Ozpx++ulZvnx5rrnmmiTJpk2bct5556W9vT2TJ0/OE088kU9+8pPZtm1bhg0bliRZunRp5s2bl507d6auri7z5s3LihUrsnHjxuprXXvttdm1a1dWrlyZJJk0aVIuvvjiLFmyJEnS3d2dkSNHZvbs2bntttv+6Ny7urrS2NiYzs7ONDQ0vP+Lc0fjYfZ1Hv3PA4AaOOK/v48CNf8MYGfn/wbCkCFDkiTr1q3L/v37M2XKlOqYc889N6NGjUp7e3uSpL29PRdccEE1/pKkpaUlXV1deemll6pj3nqMg2MOHmPfvn1Zt25djzH9+/fPlClTqmMAAI5Fx9Xyxbu7uzNnzpx85CMfyfnnn58k6ejoSF1dXQYPHtxj7LBhw9LR0VEd89b4O7j/4L7Djenq6sobb7yR3/72tzlw4MAhx2zatOmQ8927d2/27t1b/bmrq+s9vHsAgNqo6RXA1tbWbNy4MQ888EAtp/EnW7RoURobG6uPkSNH1npKAADvWM0CcNasWXn88cfz4x//OCNGjKhub2pqyr59+7Jr164e47dv356mpqbqmD+8K/jgz39sTENDQ0444YScdtppGTBgwCHHHDzGH5o/f346Ozurj61bt76nNQAAqIVeD8BKpZJZs2blkUceyZNPPpnRo0f32D9+/Pgcf/zxWbNmTXXb5s2bs2XLljQ3NydJmpubs2HDhh53665evToNDQ0ZM2ZMdcxbj3FwzMFj1NXVZfz48T3GdHd3Z82aNdUxf6i+vj4NDQ09HgAAR5te/wxga2trli9fnh/+8IcZNGhQ9TN7jY2NOeGEE9LY2JiZM2emra0tQ4YMSUNDQ2bPnp3m5uZMnjw5SXL55ZdnzJgx+dznPpfFixeno6Mjt99+e1pbW1NfX58kuemmm7JkyZLceuutueGGG/Lkk0/moYceyooVK6pzaWtry4wZMzJhwoRMnDgxd911V3bv3p3rr7++t5cFAKDX9HoA3nfffUmSj33sYz22f/e7380XvvCFJMm3v/3t9O/fP9OmTcvevXvT0tKSe++9tzp2wIABefzxx3PzzTenubk5J510UmbMmJGvf/3r1TGjR4/OihUrMnfu3Nx9990ZMWJE7r///rS0tFTHTJ8+PTt37syCBQvS0dGRCy+8MCtXrnzbjSEAAMeSmn8P4NHM9wC+x+cBQA34HsA+8D2AAAD0LgEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUJjjaj0BCnZH42H2dfbmTACgKK4AAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFKbXA/Dpp5/Opz71qQwfPjz9+vXLo48+2mN/pVLJggULcsYZZ+SEE07IlClT8vOf/7zHmN/85je57rrr0tDQkMGDB2fmzJl5/fXXe4z56U9/mo9+9KMZOHBgRo4cmcWLF79tLg8//HDOPffcDBw4MBdccEH+4z/+4wi9awCAvqPXA3D37t0ZN25c7rnnnkPuX7x4cb7zne9k6dKlefbZZ3PSSSelpaUle/bsqY657rrr8tJLL2X16tV5/PHH8/TTT+dLX/pSdX9XV1cuv/zynHnmmVm3bl2+9a1v5Y477sg///M/V8c888wz+cxnPpOZM2fmv//7v3PVVVflqquuysaNG4/wCgAA1Fa/SqVSqdmL9+uXRx55JFdddVXy+6t/w4cPz9/+7d/mK1/5SpKks7Mzw4YNy7Jly3LttdfmZz/7WcaMGZPnn38+EyZMSJKsXLkyn/jEJ/LLX/4yw4cPz3333Ze/+7u/S0dHR+rq6pIkt912Wx599NFs2rQpSTJ9+vTs3r07jz/+eHU+kydPzoUXXpilS5f+SfPv6upKY2NjOjs709DQ8L6vT+5oPMy+znKfBwDvwRH//X0U6FOfAXzllVfS0dGRKVOmVLc1NjZm0qRJaW9vT5K0t7dn8ODB1fhLkilTpqR///559tlnq2MuueSSavwlSUtLSzZv3pzf/va31TFvfZ2DYw6+DgDAseq4Wk/grTo6OpIkw4YN67F92LBh1X0dHR0ZOnRoj/3HHXdchgwZ0mPM6NGj33aMg/tOOeWUdHR0HPZ1DmXv3r3Zu3dv9eeurq53+U4BAGqnT10B7OsWLVqUxsbG6mPkyJG1nhIAwDvWpwKwqakpSbJ9+/Ye27dv317d19TUlB07dvTY/+abb+Y3v/lNjzGHOsZbX+P/GnNw/6HMnz8/nZ2d1cfWrVvfw7sFAKiNPhWAo0ePTlNTU9asWVPd1tXVlWeffTbNzc1Jkubm5uzatSvr1q2rjnnyySfT3d2dSZMmVcc8/fTT2b9/f3XM6tWrc8455+SUU06pjnnr6xwcc/B1DqW+vj4NDQ09HgAAR5teD8DXX38969evz/r165Pf3/ixfv36bNmyJf369cucOXPyjW98I//+7/+eDRs25POf/3yGDx9evVP4vPPOyxVXXJEbb7wxzz33XP7rv/4rs2bNyrXXXpvhw4cnST772c+mrq4uM2fOzEsvvZQHH3wwd999d9ra2qrz+PKXv5yVK1fm7//+77Np06bccccdeeGFFzJr1qzeXhIAgF7V6zeBvPDCC7n00kurPx+MshkzZmTZsmW59dZbs3v37nzpS1/Krl278pd/+ZdZuXJlBg4cWH3O97///cyaNSuXXXZZ+vfvn2nTpuU73/lOdX9jY2N+9KMfpbW1NePHj89pp52WBQsW9PiuwL/4i7/I8uXLc/vtt+erX/1qPvzhD+fRRx/N+eef32trAQBQCzX9HsCjne8BrNHzAOA98D2AfewzgAAAHHkCEACgMAIQAKAwAhAAoDACEACgMH3q3wKG98ydxQDwR7kCCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQmONqPQE4qt3ReJh9nb05EwD4k7kCCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBhfAwO14OtjAKghVwABAAojAAEACuNPwHA08adjAN4HrgACABTGFUDg3V9Z7O0rksfCFdCjZa1Ldyys97HwHjhiBCDQ+46FcDxafrn2teDs7fkcLf87Hc6x8P+XvvR6JAIQAN5HJcdMye/9KOQzgAAAhRGAAACFEYAAAIURgAAAhRGAAACFcRcwxN1rAJTFFUAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIUH4D33HNPzjrrrAwcODCTJk3Kc889V+spAQAcUUUH4IMPPpi2trYsXLgwL774YsaNG5eWlpbs2LGj1lMDADhiig7Af/iHf8iNN96Y66+/PmPGjMnSpUtz4okn5l/+5V9qPTUAgCPmuFpPoFb27duXdevWZf78+dVt/fv3z5QpU9Le3n7I5+zduzd79+6t/tzZ2Zkk6erqOjKT3Fv5v/cd7jWP9ecdztHyHvrSmtViPkfL8w7naHkPfWnNajGfo+V5h3O0vIe+tGZ/xMHf25XKYV77GNevUui737ZtWz7wgQ/kmWeeSXNzc3X7rbfemrVr1+bZZ59923PuuOOO3Hnnnb08UwDgSNi6dWtGjBhR62nURLFXAN+N+fPnp62trfpzd3d3fvOb3+TUU09Nv379eozt6urKyJEjs3Xr1jQ0NNRgtkcn6/bOWbN3x7q9O9bt3bFu79yRXLNKpZLXXnstw4cPf1+PezQpNgBPO+20DBgwINu3b++xffv27Wlqajrkc+rr61NfX99j2+DBgw/7Og0NDf7P/i5Yt3fOmr071u3dsW7vjnV7547UmjU2Nr7vxzyaFHsTSF1dXcaPH581a9ZUt3V3d2fNmjU9/iQMAHCsKfYKYJK0tbVlxowZmTBhQiZOnJi77roru3fvzvXXX1/rqQEAHDFFB+D06dOzc+fOLFiwIB0dHbnwwguzcuXKDBs27D0fu76+PgsXLnzbn4w5POv2zlmzd8e6vTvW7d2xbu+cNTuyir0LGACgVMV+BhAAoFQCEACgMAIQAKAwAhAAoDAC8Ai45557ctZZZ2XgwIGZNGlSnnvuuVpPqU+744470q9fvx6Pc889t9bT6nOefvrpfOpTn8rw4cPTr1+/PProoz32VyqVLFiwIGeccUZOOOGETJkyJT//+c9rNt++4o+t2xe+8IW3nX9XXHFFzebbFyxatCgXX3xxBg0alKFDh+aqq67K5s2be4zZs2dPWltbc+qpp+bkk0/OtGnT3vbF+qX5U9btYx/72NvOt5tuuqlmc+4L7rvvvowdO7b6hc/Nzc154oknqvuda0eGAHyfPfjgg2lra8vChQvz4osvZty4cWlpacmOHTtqPbU+7c///M/z6quvVh//+Z//Wesp9Tm7d+/OuHHjcs899xxy/+LFi/Od73wnS5cuzbPPPpuTTjopLS0t2bNnT6/PtS/5Y+uWJFdccUWP8+8HP/hBr86xr1m7dm1aW1vzk5/8JKtXr87+/ftz+eWXZ/fu3dUxc+fOzWOPPZaHH344a9euzbZt23L11VfXdN619qesW5LceOONPc63xYsX12zOfcGIESPyzW9+M+vWrcsLL7yQj3/84/n0pz+dl156KXGuHTkV3lcTJ06stLa2Vn8+cOBAZfjw4ZVFixbVdF592cKFCyvjxo2r9TSOKkkqjzzySPXn7u7uSlNTU+Vb3/pWdduuXbsq9fX1lR/84Ac1mmXf84frVqlUKjNmzKh8+tOfrtmcjgY7duyoJKmsXbu2Uvn9uXX88cdXHn744eqYn/3sZ5Uklfb29hrOtG/5w3WrVCqV//f//l/ly1/+ck3ndTQ45ZRTKvfff79z7QhyBfB9tG/fvqxbty5Tpkypbuvfv3+mTJmS9vb2ms6tr/v5z3+e4cOH54Mf/GCuu+66bNmypdZTOqq88sor6ejo6HHuNTY2ZtKkSc69P8FTTz2VoUOH5pxzzsnNN9+cX//617WeUp/S2dmZJBkyZEiSZN26ddm/f3+P8+3cc8/NqFGjnG9v8YfrdtD3v//9nHbaaTn//PMzf/78/O53v6vRDPueAwcO5IEHHsju3bvT3NzsXDuCiv6XQN5vv/rVr3LgwIG3/Usiw4YNy6ZNm2o2r75u0qRJWbZsWc4555y8+uqrufPOO/PRj340GzduzKBBg2o9vaNCR0dH8vtz7a2GDRtW3cehXXHFFbn66qszevTovPzyy/nqV7+aK6+8Mu3t7RkwYECtp1dz3d3dmTNnTj7ykY/k/PPPT35/vtXV1WXw4ME9xjrf/n+HWrck+exnP5szzzwzw4cPz09/+tPMmzcvmzdvzr/927/VdL61tmHDhjQ3N2fPnj05+eST88gjj2TMmDFZv369c+0IEYDU3JVXXln977Fjx2bSpEk588wz89BDD2XmzJk1nRvHvmuvvbb63xdccEHGjh2bD33oQ3nqqady2WWX1XRufUFra2s2btzoc7nv0P+1bl/60peq/33BBRfkjDPOyGWXXZaXX345H/rQh2ow077hnHPOyfr169PZ2Zl//dd/zYwZM7J27dpaT+uY5k/A76PTTjstAwYMeNvdSdu3b09TU1PN5nW0GTx4cP7sz/4sv/jFL2o9laPGwfPLuffeffCDH8xpp53m/Esya9asPP744/nxj3+cESNGVLc3NTVl37592bVrV4/xzrf/9X+t26FMmjQpSYo/3+rq6nL22Wdn/PjxWbRoUcaNG5e7777buXYECcD3UV1dXcaPH581a9ZUt3V3d2fNmjVpbm6u6dyOJq+//npefvnlnHHGGbWeylFj9OjRaWpq6nHudXV15dlnn3XuvUO//OUv8+tf/7ro869SqWTWrFl55JFH8uSTT2b06NE99o8fPz7HH398j/Nt8+bN2bJlS9Hn2x9bt0NZv359khR9vh1Kd3d39u7d61w7gvwJ+H3W1taWGTNmZMKECZk4cWLuuuuu7N69O9dff32tp9ZnfeUrX8mnPvWpnHnmmdm2bVsWLlyYAQMG5DOf+Uytp9anvP766z2uErzyyitZv359hgwZklGjRmXOnDn5xje+kQ9/+MMZPXp0vva1r2X48OG56qqrajrvWjvcug0ZMiR33nlnpk2blqamprz88su59dZbc/bZZ6elpaWm866l1tbWLF++PD/84Q8zaNCg6metGhsbc8IJJ6SxsTEzZ85MW1tbhgwZkoaGhsyePTvNzc2ZPHlyradfM39s3V5++eUsX748n/jEJ3Lqqafmpz/9aebOnZtLLrkkY8eOrfX0a2b+/Pm58sorM2rUqLz22mtZvnx5nnrqqaxatcq5diTV+jbkY9E//uM/VkaNGlWpq6urTJw4sfKTn/yk1lPq06ZPn14544wzKnV1dZUPfOADlenTp1d+8Ytf1Hpafc6Pf/zjSpK3PWbMmFGp/P6rYL72ta9Vhg0bVqmvr69cdtlllc2bN9d62jV3uHX73e9+V7n88ssrp59+euX444+vnHnmmZUbb7yx0tHRUetp19Sh1itJ5bvf/W51zBtvvFH5m7/5m8opp5xSOfHEEyt//dd/XXn11VdrOu9a+2PrtmXLlsoll1xSGTJkSKW+vr5y9tlnV2655ZZKZ2dnradeUzfccEPlzDPPrNTV1VVOP/30ymWXXVb50Y9+VN3vXDsy+lX+96QFAKAQPgMIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFCY/w8tmfmOTDaPEwAAAABJRU5ErkJggg==",
+ "text/html": [
+ "\n",
+ " <div style=\"display: inline-block;\">\n",
+ " <div class=\"jupyter-widgets widget-label\" style=\"text-align: center;\">\n",
+ " Figure 2\n",
+ " </div>\n",
+ " <img src='' width=640.0/>\n",
+ " </div>\n",
+ " "
+ ],
"text/plain": [
- "0.1518"
- ]
- },
- "execution_count": 76,
- "metadata": {},
- "output_type": "execute_result"
- },
- {
- "data": {
- "text/plain": [
- "0.1518"
+ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
]
},
- "execution_count": 75,
"metadata": {},
- "output_type": "execute_result"
+ "output_type": "display_data"
}
],
"source": [
- "sum(distance1)/len(distance1)"
+ "with plt.ioff():\n",
+ " plt.hist(data['labels'],bins=64)\n",
+ " plt.show()"
]
},
{
"cell_type": "code",
- "execution_count": 77,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "EpDBxcgaIPpJ",
- "outputId": "37cf9577-8cd8-444c-ec1a-c6f4b6061b7f"
- },
+ "execution_count": 50,
+ "execution_state": "idle",
+ "metadata": {},
"outputs": [
{
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "dataset size = 49MB\n"
- ]
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "24b2976d050e43af8bad0e4080a224eb",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAjcElEQVR4nO3dfZTWdZ3/8dcAcRMxg1DMOCsgtW6IN2Xi0mg3W7KSsZ48cSp2J5eUI3vaoUTSgkrKvAHZXTOKID0ucE66VrurFRVKWLIlIlK03oW2WVDuwO4hZoSOgzLX749fXqcx/W2/1rkuxs/jcc51Ttf3+7nm+/4QytPvXHPRUKlUKgEAoBiD6j0AAAC1JQABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAozpN4DDGS9vb15/PHHM2rUqDQ0NNR7HADg91CpVPLEE0+ktbU1gwaVeS9MAP4vPP744xk/fny9xwAA/gC7d+/OMcccU+8x6kIA/i+MGjUq+c1voMbGxnqPAwD8Hrq7uzN+/Pjqn+MlEoD/C89827exsVEAAsAAU/Lbt8r8xjcAQMEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYYbUewCe37GLvvG85362bGZNZwEAXjzcAQQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAozBEZgJs3b84555yT1tbWNDQ05LbbbutzvlKpZMmSJTn66KMzYsSITJ8+PY8++mifNfv27Ut7e3saGxszevTozJ07NwcOHOiz5t///d/zxje+McOHD8/48eOzfPnymuwPAKCejsgAPHjwYF7zmtdk5cqVz3l++fLlWbFiRVavXp2tW7dm5MiRmTFjRp588snqmvb29jz44IPZuHFj1q9fn82bN2fevHnV893d3TnrrLMyceLEbN++PX/3d3+XT37yk7n++utrskcAgHppqFQqlXoP8f/S0NCQW2+9Neeee27ym7t/ra2t+dCHPpRLLrkkSdLV1ZXm5uasXbs2s2fPzsMPP5wpU6Zk27ZtmTp1apJkw4YNefvb355f/OIXaW1tzapVq/Kxj30snZ2dGTp0aJJk0aJFue222/LjH//495qtu7s7TU1N6erqSmNj4wu+92MXfeN5z/1s2cwX/HoAUIL+/vN7IDgi7wD+vzz22GPp7OzM9OnTq8eampoybdq0bNmyJUmyZcuWjB49uhp/STJ9+vQMGjQoW7dura5505veVI2/JJkxY0Z27tyZX/3qV8957Z6ennR3d/d5AAAMNAMuADs7O5Mkzc3NfY43NzdXz3V2dmbcuHF9zg8ZMiRjxozps+a5vsZvX+PZli5dmqampupj/PjxL+DOAABqY8AFYD0tXrw4XV1d1cfu3bvrPRIAwP+3AReALS0tSZI9e/b0Ob5nz57quZaWluzdu7fP+aeffjr79u3rs+a5vsZvX+PZhg0blsbGxj4PAICBZsAF4KRJk9LS0pJNmzZVj3V3d2fr1q1pa2tLkrS1tWX//v3Zvn17dc2dd96Z3t7eTJs2rbpm8+bNeeqpp6prNm7cmFe/+tU56qijaronAIBaOiID8MCBA9mxY0d27NiR/OYHP3bs2JFdu3aloaEhCxYsyJVXXpmvfe1ruf/++/PXf/3XaW1trf6k8PHHH5+3ve1tufDCC3Pvvffm+9//fubPn5/Zs2entbU1SfJXf/VXGTp0aObOnZsHH3wwX/rSl/KZz3wmCxcurOveAQD625B6D/Bc7rvvvrzlLW+pPn8myubMmZO1a9fmwx/+cA4ePJh58+Zl//79ecMb3pANGzZk+PDh1dfcdNNNmT9/fs4888wMGjQos2bNyooVK6rnm5qacscdd6SjoyOnnnpqXv7yl2fJkiV9PisQAODF6Ij/HMAjmc8BBICBx+cAHqHfAgYAoP8IQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCDMgAPHz4cC677LJMmjQpI0aMyKte9apcccUVqVQq1TWVSiVLlizJ0UcfnREjRmT69Ol59NFH+3ydffv2pb29PY2NjRk9enTmzp2bAwcO1GFHAAC1MyAD8JprrsmqVavyuc99Lg8//HCuueaaLF++PJ/97Gera5YvX54VK1Zk9erV2bp1a0aOHJkZM2bkySefrK5pb2/Pgw8+mI0bN2b9+vXZvHlz5s2bV6ddAQDURkPlt2+bDRB/8Rd/kebm5tx4443VY7NmzcqIESPyxS9+MZVKJa2trfnQhz6USy65JEnS1dWV5ubmrF27NrNnz87DDz+cKVOmZNu2bZk6dWqSZMOGDXn729+eX/ziF2ltbf0f5+ju7k5TU1O6urrS2Nj4gu/z2EXfeN5zP1s28wW/HgCUoL///B4IBuQdwNNPPz2bNm3KI488kiT50Y9+lO9973s5++yzkySPPfZYOjs7M3369OprmpqaMm3atGzZsiVJsmXLlowePboaf0kyffr0DBo0KFu3bq35ngAAamVIvQf4QyxatCjd3d2ZPHlyBg8enMOHD+eqq65Ke3t7kqSzszNJ0tzc3Od1zc3N1XOdnZ0ZN25cn/NDhgzJmDFjqmueraenJz09PdXn3d3dL/jeAAD624C8A/jlL385N910U26++eb84Ac/yLp16/L3f//3WbduXb9ed+nSpWlqaqo+xo8f36/XAwDoDwMyAC+99NIsWrQos2fPzkknnZTzzjsvF198cZYuXZokaWlpSZLs2bOnz+v27NlTPdfS0pK9e/f2Of/0009n37591TXPtnjx4nR1dVUfu3fv7qcdAgD0nwEZgL/+9a8zaFDf0QcPHpze3t4kyaRJk9LS0pJNmzZVz3d3d2fr1q1pa2tLkrS1tWX//v3Zvn17dc2dd96Z3t7eTJs27TmvO2zYsDQ2NvZ5AAAMNAPyPYDnnHNOrrrqqkyYMCEnnHBCfvjDH+baa6/NBRdckCRpaGjIggULcuWVV+a4447LpEmTctlll6W1tTXnnntukuT444/P2972tlx44YVZvXp1nnrqqcyfPz+zZ8/+vX4CGABgoBqQAfjZz342l112Wf72b/82e/fuTWtra/7mb/4mS5Ysqa758Ic/nIMHD2bevHnZv39/3vCGN2TDhg0ZPnx4dc1NN92U+fPn58wzz8ygQYMya9asrFixok67AgCojQH5OYBHCp8DCAADj88BHKDvAQQA4A8nAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAozYAPwl7/8Zd773vdm7NixGTFiRE466aTcd9991fOVSiVLlizJ0UcfnREjRmT69Ol59NFH+3yNffv2pb29PY2NjRk9enTmzp2bAwcO1GE3AAC1MyAD8Fe/+lXOOOOMvOQlL8m3vvWtPPTQQ/mHf/iHHHXUUdU1y5cvz4oVK7J69eps3bo1I0eOzIwZM/Lkk09W17S3t+fBBx/Mxo0bs379+mzevDnz5s2r064AAGqjoVKpVOo9xP+vRYsW5fvf/37+7d/+7TnPVyqVtLa25kMf+lAuueSSJElXV1eam5uzdu3azJ49Ow8//HCmTJmSbdu2ZerUqUmSDRs25O1vf3t+8YtfpLW19X+co7u7O01NTenq6kpjY+MLvMvk2EXfeN5zP1s28wW/HgCUoL///B4IBuQdwK997WuZOnVq3vWud2XcuHE55ZRTcsMNN1TPP/bYY+ns7Mz06dOrx5qamjJt2rRs2bIlSbJly5aMHj26Gn9JMn369AwaNChbt259zuv29PSku7u7zwMAYKAZkAH405/+NKtWrcpxxx2X22+/Pe9///vzwQ9+MOvWrUuSdHZ2Jkmam5v7vK65ubl6rrOzM+PGjetzfsiQIRkzZkx1zbMtXbo0TU1N1cf48eP7aYcAAP1nQAZgb29vXve61+Xqq6/OKaecknnz5uXCCy/M6tWr+/W6ixcvTldXV/Wxe/fufr0eAEB/GJABePTRR2fKlCl9jh1//PHZtWtXkqSlpSVJsmfPnj5r9uzZUz3X0tKSvXv39jn/9NNPZ9++fdU1zzZs2LA0Njb2eQAADDQDMgDPOOOM7Ny5s8+xRx55JBMnTkySTJo0KS0tLdm0aVP1fHd3d7Zu3Zq2trYkSVtbW/bv35/t27dX19x5553p7e3NtGnTarYXAIBaG1LvAf4QF198cU4//fRcffXVefe735177703119/fa6//vokSUNDQxYsWJArr7wyxx13XCZNmpTLLrssra2tOffcc5Pf3DF829veVv3W8VNPPZX58+dn9uzZv9dPAAMADFQDMgBPO+203HrrrVm8eHE+9alPZdKkSbnuuuvS3t5eXfPhD384Bw8ezLx587J///684Q1vyIYNGzJ8+PDqmptuuinz58/PmWeemUGDBmXWrFlZsWJFnXYFAFAbA/JzAI8UPgcQAAYenwM4QN8DCADAH04AAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRGAAIAFEYAAgAURgACABRmSL0HgOdy7KJvPO+5ny2bWdNZAODFxh1AAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMIIQACAwghAAIDCCEAAgMK8KAJw2bJlaWhoyIIFC6rHnnzyyXR0dGTs2LF52ctellmzZmXPnj19Xrdr167MnDkzL33pSzNu3Lhceumlefrpp+uwAwCA2hnwAbht27Z84QtfyMknn9zn+MUXX5yvf/3r+cpXvpK77rorjz/+eN75zndWzx8+fDgzZ87MoUOHcvfdd2fdunVZu3ZtlixZUoddAADUzoAOwAMHDqS9vT033HBDjjrqqOrxrq6u3Hjjjbn22mvz1re+NaeeemrWrFmTu+++O/fcc0+S5I477shDDz2UL37xi3nta1+bs88+O1dccUVWrlyZQ4cO1XFXAAD9a0AHYEdHR2bOnJnp06f3Ob59+/Y89dRTfY5Pnjw5EyZMyJYtW5IkW7ZsyUknnZTm5ubqmhkzZqS7uzsPPvjgc16vp6cn3d3dfR4AAAPNkHoP8Ie65ZZb8oMf/CDbtm37nXOdnZ0ZOnRoRo8e3ed4c3NzOjs7q2t+O/6eOf/MueeydOnSXH755S/gLgAAam9A3gHcvXt3Lrrootx0000ZPnx4za67ePHidHV1VR+7d++u2bUBAF4oAzIAt2/fnr179+Z1r3tdhgwZkiFDhuSuu+7KihUrMmTIkDQ3N+fQoUPZv39/n9ft2bMnLS0tSZKWlpbf+angZ54/s+bZhg0blsbGxj4PAICBZkAG4Jlnnpn7778/O3bsqD6mTp2a9vb26v9+yUtekk2bNlVfs3PnzuzatSttbW1Jkra2ttx///3Zu3dvdc3GjRvT2NiYKVOm1GVfAAC1MCDfAzhq1KiceOKJfY6NHDkyY8eOrR6fO3duFi5cmDFjxqSxsTEf+MAH0tbWlte//vVJkrPOOitTpkzJeeedl+XLl6ezszMf//jH09HRkWHDhtVlXwAAtTAgA/D38elPfzqDBg3KrFmz0tPTkxkzZuTzn/989fzgwYOzfv36vP/9709bW1tGjhyZOXPm5FOf+lRd5wYA6G8vmgD87ne/2+f58OHDs3LlyqxcufJ5XzNx4sR885vfrMF0AABHjgH5HkAAAP5wAhAAoDACEACgMAIQAKAwAhAAoDACEACgMAIQAKAwAhAAoDACEACgMAIQAKAwAhAAoDACEACgMAIQAKAwAhAAoDACEACgMAIQAKAwAhAAoDACEACgMAIQAKAwAhAAoDACEACgMAIQAKAwAhAAoDACEACgMAIQAKAwAhAAoDACEACgMAIQAKAwAhAAoDACEACgMAIQAKAwAhAAoDACEACgMAIQAKAwAhAAoDACEACgMAIQAKAwAhAAoDACEACgMAIQAKAwAhAAoDACEACgMAIQAKAwAhAAoDACEACgMAIQAKAwAhAAoDACEACgMAIQAKAwQ+o9ANDXsYu+8bznfrZsZk1nAeDFyR1AAIDCDMgAXLp0aU477bSMGjUq48aNy7nnnpudO3f2WfPkk0+mo6MjY8eOzcte9rLMmjUre/bs6bNm165dmTlzZl760pdm3LhxufTSS/P000/XeDcAALU1IAPwrrvuSkdHR+65555s3LgxTz31VM4666wcPHiwuubiiy/O17/+9XzlK1/JXXfdlccffzzvfOc7q+cPHz6cmTNn5tChQ7n77ruzbt26rF27NkuWLKnTrgAAamNAvgdww4YNfZ6vXbs248aNy/bt2/OmN70pXV1dufHGG3PzzTfnrW99a5JkzZo1Of7443PPPffk9a9/fe6444489NBD+fa3v53m5ua89rWvzRVXXJGPfOQj+eQnP5mhQ4fWaXcAAP1rQN4BfLaurq4kyZgxY5Ik27dvz1NPPZXp06dX10yePDkTJkzIli1bkiRbtmzJSSedlObm5uqaGTNmpLu7Ow8++GDN9wAAUCsD8g7gb+vt7c2CBQtyxhln5MQTT0ySdHZ2ZujQoRk9enSftc3Nzens7Kyu+e34e+b8M+eeS09PT3p6eqrPu7u7X/D9AAD0twF/B7CjoyMPPPBAbrnlln6/1tKlS9PU1FR9jB8/vt+vCQDwQhvQATh//vysX78+3/nOd3LMMcdUj7e0tOTQoUPZv39/n/V79uxJS0tLdc2zfyr4mefPrHm2xYsXp6urq/rYvXt3P+wKAKB/DcgArFQqmT9/fm699dbceeedmTRpUp/zp556al7ykpdk06ZN1WM7d+7Mrl270tbWliRpa2vL/fffn71791bXbNy4MY2NjZkyZcpzXnfYsGFpbGzs8wAAGGgG5HsAOzo6cvPNN+erX/1qRo0aVX3PXlNTU0aMGJGmpqbMnTs3CxcuzJgxY9LY2JgPfOADaWtry+tf//okyVlnnZUpU6bkvPPOy/Lly9PZ2ZmPf/zj6ejoyLBhw+q8QwCA/jMgA3DVqlVJkj/7sz/rc3zNmjV53/velyT59Kc/nUGDBmXWrFnp6enJjBkz8vnPf766dvDgwVm/fn3e//73p62tLSNHjsycOXPyqU99qsa7AQCorQEZgJVK5X9cM3z48KxcuTIrV6583jUTJ07MN7/5zRd4OgCAI9uAfA8gAAB/OAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUBgBCABQGAEIAFAYAQgAUJgh9R4A4Lcdu+gbz3vuZ8tm1nQWgBcrdwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKM6TeAwDwfx276BvPe+5ny2bWdBbgxc0dQACAwghAAIDCFB+AK1euzLHHHpvhw4dn2rRpuffee+s9EgBAvyr6PYBf+tKXsnDhwqxevTrTpk3LddddlxkzZmTnzp0ZN25cvccDKIr3QELtFH0H8Nprr82FF16Y888/P1OmTMnq1avz0pe+NP/4j/9Y79EAAPpNsXcADx06lO3bt2fx4sXVY4MGDcr06dOzZcuW53xNT09Penp6qs+7urqSJN3d3f0yY2/Pr5/3XH9d80hh78/txb73FL7/kvce+y/WiZ+4/XnPPXD5jH655jO/nyqVSr98/YGg2AD87//+7xw+fDjNzc19jjc3N+fHP/7xc75m6dKlufzyy3/n+Pjx4/ttzufTdF3NL3nEsPdylbz/kvce+y9Wf////sQTT6Spqal/L3KEKjYA/xCLFy/OwoULq897e3uzb9++jB07Ng0NDS/otbq7uzN+/Pjs3r07jY2NL+jXHgjsv+z9x69B8fuPXwP778f9VyqVPPHEE2ltbX1Bv+5AUmwAvvzlL8/gwYOzZ8+ePsf37NmTlpaW53zNsGHDMmzYsD7HRo8e3a9zNjY2FvkP/jPsv+z9x69B8fuPXwP776f9l3rn7xnF/hDI0KFDc+qpp2bTpk3VY729vdm0aVPa2trqOhsAQH8q9g5gkixcuDBz5szJ1KlT86d/+qe57rrrcvDgwZx//vn1Hg0AoN8UHYDvec978l//9V9ZsmRJOjs789rXvjYbNmz4nR8MqYdhw4blE5/4xO98y7kU9l/2/uPXoPj9x6+B/Re+//7WUCn5Z6ABAApU7HsAAQBKJQABAAojAAEACiMAAQAKIwCPMJs3b84555yT1tbWNDQ05Lbbbqv3SDW1dOnSnHbaaRk1alTGjRuXc889Nzt37qz3WDWzatWqnHzyydUPPm1ra8u3vvWteo9VN8uWLUtDQ0MWLFhQ71Fq5pOf/GQaGhr6PCZPnlzvsWrql7/8Zd773vdm7NixGTFiRE466aTcd9999R6rZo499tjf+T3Q0NCQjo6Oeo9WE4cPH85ll12WSZMmZcSIEXnVq16VK664oui/t7c/FP0xMEeigwcP5jWveU0uuOCCvPOd76z3ODV31113paOjI6eddlqefvrpfPSjH81ZZ52Vhx56KCNHjqz3eP3umGOOybJly3LcccelUqlk3bp1ecc73pEf/vCHOeGEE+o9Xk1t27YtX/jCF3LyySfXe5SaO+GEE/Ltb3+7+nzIkHL+Vf2rX/0qZ5xxRt7ylrfkW9/6Vl7xilfk0UcfzVFHHVXv0Wpm27ZtOXz4cPX5Aw88kD//8z/Pu971rrrOVSvXXHNNVq1alXXr1uWEE07Ifffdl/PPPz9NTU354Ac/WO/xXjTK+bfKAHH22Wfn7LPPrvcYdbNhw4Y+z9euXZtx48Zl+/btedOb3lS3uWrlnHPO6fP8qquuyqpVq3LPPfcUFYAHDhxIe3t7brjhhlx55ZX1HqfmhgwZ8rx/JeWL3TXXXJPx48dnzZo11WOTJk2q60y19opXvKLP82XLluVVr3pV3vzmN9dtplq6++678453vCMzZ85MfnNH9J/+6Z9y77331nu0FxXfAuaI1tXVlSQZM2ZMvUepucOHD+eWW27JwYMHi/vrCTs6OjJz5sxMnz693qPUxaOPPprW1ta88pWvTHt7e3bt2lXvkWrma1/7WqZOnZp3vetdGTduXE455ZTccMMN9R6rbg4dOpQvfvGLueCCC9LQ0FDvcWri9NNPz6ZNm/LII48kSX70ox/le9/7XtE3R/qDO4AcsXp7e7NgwYKcccYZOfHEE+s9Ts3cf//9aWtry5NPPpmXvexlufXWWzNlypR6j1Uzt9xyS37wgx9k27Zt9R6lLqZNm5a1a9fm1a9+df7zP/8zl19+ed74xjfmgQceyKhRo+o9Xr/76U9/mlWrVmXhwoX56Ec/mm3btuWDH/xghg4dmjlz5tR7vJq77bbbsn///rzvfe+r9yg1s2jRonR3d2fy5MkZPHhwDh8+nKuuuirt7e31Hu1FRQByxOro6MgDDzyQ733ve/UepaZe/epXZ8eOHenq6so///M/Z86cObnrrruKiMDdu3fnoosuysaNGzN8+PB6j1MXv32X4+STT860adMyceLEfPnLX87cuXPrOlst9Pb2ZurUqbn66quTJKecckoeeOCBrF69usgAvPHGG3P22WentbW13qPUzJe//OXcdNNNufnmm3PCCSdkx44dWbBgQVpbW4v8PdBfBCBHpPnz52f9+vXZvHlzjjnmmHqPU1NDhw7NH//xHydJTj311Gzbti2f+cxn8oUvfKHeo/W77du3Z+/evXnd615XPXb48OFs3rw5n/vc59LT05PBgwfXdcZaGz16dP7kT/4kP/nJT+o9Sk0cffTRv/MfO8cff3z+5V/+pW4z1cvPf/7zfPvb386//uu/1nuUmrr00kuzaNGizJ49O0ly0kkn5ec//3mWLl0qAF9AApAjSqVSyQc+8IHceuut+e53v1vcm7+fS29vb3p6euo9Rk2ceeaZuf/++/scO//88zN58uR85CMfKS7+8psfiPmP//iPnHfeefUepSbOOOOM3/nop0ceeSQTJ06s20z1smbNmowbN676wxCl+PWvf51Bg/r+iMLgwYPT29tbt5lejATgEebAgQN9/kv/sccey44dOzJmzJhMmDChrrPVQkdHR26++eZ89atfzahRo9LZ2ZkkaWpqyogRI+o9Xr9bvHhxzj777EyYMCFPPPFEbr755nz3u9/N7bffXu/RamLUqFG/837PkSNHZuzYscW8D/SSSy7JOeeck4kTJ+bxxx/PJz7xiQwePDh/+Zd/We/RauLiiy/O6aefnquvvjrvfve7c++99+b666/P9ddfX+/Raqq3tzdr1qzJnDlzivoYoPzm0xCuuuqqTJgwISeccEJ++MMf5tprr80FF1xQ79FeXCocUb7zne9UkvzOY86cOfUerSaea+9JKmvWrKn3aDVxwQUXVCZOnFgZOnRo5RWveEXlzDPPrNxxxx31Hquu3vzmN1cuuuiieo9RM+95z3sqRx99dGXo0KGVP/qjP6q85z3vqfzkJz+p91g19fWvf71y4oknVoYNG1aZPHly5frrr6/3SDV3++23V5JUdu7cWe9Raq67u7ty0UUXVSZMmFAZPnx45ZWvfGXlYx/7WKWnp6feo72oNFR8tDYAQFF8DiAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGEEIABAYQQgAEBhBCAAQGH+D0qdXUuXgornAAAAAElFTkSuQmCC",
+ "text/html": [
+ "\n",
+ " <div style=\"display: inline-block;\">\n",
+ " <div class=\"jupyter-widgets widget-label\" style=\"text-align: center;\">\n",
+ " Figure\n",
+ " </div>\n",
+ " <img src='' width=640.0/>\n",
+ " </div>\n",
+ " "
+ ],
+ "text/plain": [
+ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
}
],
"source": [
- "print(f\"dataset size = {os.path.getsize('data.pkl')//(1024*1024)}MB\")"
+ "with plt.ioff():\n",
+ " plt.hist(tune_data['labels'],bins=64)\n",
+ " plt.show()"
]
},
{
@@ -321,16 +338,22 @@
},
{
"cell_type": "code",
- "execution_count": 107,
+ "execution_count": 51,
+ "execution_state": "idle",
"metadata": {
"id": "tLOWhg_CeWzH"
},
"outputs": [],
"source": [
"class TransformerModel(nn.Module):\n",
- " def __init__(self, input_dim, model_dim, output_dim, num_heads, num_layers, seq_len, device, dropout=0.1):\n",
+ " def __init__(self, input_dim, model_dim, output_dim, num_heads, num_layers, seq_len, device, dropout):\n",
" super().__init__()\n",
" self.embedding = nn.Embedding(input_dim, model_dim//2)\n",
+ " # seq_len is odd\n",
+ " self.fancy_encoding = torch.repeat_interleave(torch.rand((1, seq_len // 2 + 1, model_dim // 2), device=device), 2, dim=1)\n",
+ " # cut off last element since the target vertex is not repeated\n",
+ " self.fancy_encoding = self.fancy_encoding[:, :seq_len, :]\n",
+ " \n",
" self.model_dim = model_dim\n",
" self.seq_len = seq_len\n",
" self.device = device\n",
@@ -341,29 +364,17 @@
" self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers)\n",
"\n",
" self.fc_out = nn.Linear(model_dim*seq_len, output_dim)\n",
- " self.fancy_encoding = torch.repeat_interleave(torch.rand((1,SEQ_LEN // 2, model_dim // 2), device=device), 2, dim=1)\n",
- " \n",
- " def positional_encoding(self, batch_size):\n",
- " position = torch.arange(self.seq_len, dtype=torch.float, device=self.device).unsqueeze(1)\n",
- " div_term = torch.exp(torch.arange(0, self.model_dim, 2, dtype=torch.float, device=self.device) *\n",
- " -(torch.log(torch.tensor(500.0)) / self.model_dim))\n",
- "\n",
- " pos_encoding = torch.zeros(self.seq_len, self.model_dim, device=self.device)\n",
- " pos_encoding[:, 0::2] = torch.sin(position * div_term)\n",
- " pos_encoding[:, 1::2] = torch.cos(position * div_term)\n",
- " pos_encoding = pos_encoding.unsqueeze(0).repeat(batch_size, 1, 1)\n",
- " return pos_encoding\n",
"\n",
" def forward(self, src, key_padding_mask):\n",
" batch_size, src_len = src.size(0), src.size(1)\n",
- " # src_pos = self.positional_encoding(batch_size)\n",
" embed = self.embedding(src)\n",
- " src = torch.cat((embed * sqrt(self.model_dim), torch.Tensor.repeat(self.fancy_encoding, (batch_size, 1, 1))), dim=2)\n",
+ " src = torch.cat((embed * sqrt(self.model_dim), self.fancy_encoding.repeat((batch_size, 1, 1))), dim=2)\n",
"\n",
- " output = self.transformer_encoder(src, None, src_key_padding_mask=key_padding_mask)\n",
+ " output = self.transformer_encoder(src, src_key_padding_mask=key_padding_mask)\n",
+ " output[key_padding_mask] = 0 # Hack to stop no_grad problem\n",
" flat_output = torch.flatten(output, start_dim=1, end_dim=2)\n",
" output = self.fc_out(flat_output)\n",
- " return output\n"
+ " return output"
]
},
{
@@ -377,7 +388,8 @@
},
{
"cell_type": "code",
- "execution_count": 121,
+ "execution_count": 78,
+ "execution_state": "idle",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
@@ -390,18 +402,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "Trainable parameters in the model: 102K\n",
- "train BASELINEs: 0.1290\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/tmp/ipykernel_390590/1991115476.py:23: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
- " train_data_tensor = torch.tensor(train_data1, dtype=torch.long, device=device)\n",
- "/tmp/ipykernel_390590/1991115476.py:31: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
- " test_data_tensor = torch.tensor(test_data1, dtype=torch.long, device=device)\n"
+ "Trainable parameters in the model: 2390K\n"
]
}
],
@@ -410,49 +411,56 @@
"assert device.type == 'cuda', \"CUDA is not available. Please check your GPU setup.\"\n",
"\n",
"# PARAMS\n",
- "VOCAB_SIZE = 1+MAX_VTXS # one more than the max number of vertices\n",
- "MODEL_DIM = 64 # Dimension of model (embedding and transformer)\n",
- "NEPOCHS = 50\n",
- "BSZ = 512\n",
- "LR = 0.001\n",
+ "VOCAB_SIZE = 1 + MAX_VTXS # one more than the max number of vertices\n",
+ "MODEL_DIM = 256 # Dimension of model (embedding and transformer)\n",
+ "NEPOCHS = 1000\n",
+ "BSZ = 3072\n",
+ "LR = 0.003\n",
+ "WD = 0.002\n",
"NHEADS = 4\n",
- "NLAYERS = 2\n",
+ "NLAYERS = 3\n",
"PAD_TOKEN = 0\n",
+ "DROPOUT = 0.2\n",
"model = TransformerModel(input_dim=VOCAB_SIZE, model_dim=MODEL_DIM,\n",
" output_dim=1, num_heads=NHEADS,\n",
" num_layers=NLAYERS, seq_len=SEQ_LEN,\n",
- " device=device).to(device)\n",
+ " dropout=DROPOUT, device=device).to(device)\n",
"\n",
"with open(\"data.pkl\", \"rb\") as f:\n",
- " data = pickle.load(f)\n",
- "\n",
- "train_data1 = data[\"train1-data\"]\n",
- "train_label1 = data[\"train1-labels\"]\n",
- "train_data_tensor = torch.tensor(train_data1, dtype=torch.long, device=device)\n",
- "train_label_tensor = torch.tensor(train_label1, dtype=torch.float, device=device)\n",
- "train_padding_mask = (train_data_tensor == PAD_TOKEN).bool().to(device)\n",
- "train_dataset = TensorDataset(train_data_tensor, train_label_tensor, train_padding_mask)\n",
- "train_loader = DataLoader(train_dataset, batch_size=BSZ, shuffle=True)\n",
+ " pickled_stuff = pickle.load(f)\n",
"\n",
- "test_data1 = data[\"test1-data\"]\n",
- "test_label1 = data[\"test1-labels\"]\n",
- "test_data_tensor = torch.tensor(test_data1, dtype=torch.long, device=device)\n",
- "test_label_tensor = torch.tensor(test_label1, dtype=torch.float, device=device)\n",
- "test_padding_mask = (test_data_tensor == PAD_TOKEN).bool().to(device)\n",
- "test_dataset = TensorDataset(test_data_tensor, test_label_tensor, test_padding_mask)\n",
+ "data = pickled_stuff[\"data\"].to(device)\n",
+ "label = pickled_stuff[\"labels\"].to(device)\n",
+ "padding_mask = (data == PAD_TOKEN).bool().to(device)\n",
+ "dataset = TensorDataset(data, label, padding_mask)\n",
+ "train_dataset, test_dataset = torch.utils.data.random_split(dataset, [.8, .2])\n",
+ "train_loader = DataLoader(train_dataset, batch_size=BSZ, shuffle=True)\n",
"test_loader = DataLoader(test_dataset, batch_size=BSZ, shuffle=True)\n",
"\n",
"criterion = nn.MSELoss()\n",
- "optimizer = torch.optim.Adam(model.parameters(), lr=LR)\n",
- "\n",
- "train_err = []\n",
- "test_err = []\n",
+ "optimizer = torch.optim.Adam(model.parameters(), lr=LR, weight_decay=WD)\n",
"\n",
"trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)\n",
- "print(f\"Trainable parameters in the model: {trainable_params//1000}K\")\n",
- "\n",
- "train_baseline = ((train_label_tensor - train_label_tensor.mean())**2).mean().item()\n",
- "print(f\"train BASELINEs: {train_baseline:.4f}\")"
+ "print(f\"Trainable parameters in the model: {trainable_params//1000}K\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 63,
+ "execution_state": "idle",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "tensor(141.4637, device='cuda:0')\n"
+ ]
+ }
+ ],
+ "source": [
+ "baseline_error = criterion(label, torch.tensor(1.5, dtype=torch.float32, device=device))\n",
+ "print(baseline_error)"
]
},
{
@@ -466,7 +474,65 @@
},
{
"cell_type": "code",
- "execution_count": 122,
+ "execution_count": 60,
+ "execution_state": "idle",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def evaluate():\n",
+ " model.eval()\n",
+ " test_loss = 0\n",
+ " with torch.no_grad():\n",
+ " for batch_src, batch_labels, batch_padding_mask in test_loader:\n",
+ " output = model(batch_src, batch_padding_mask)\n",
+ " loss = criterion(output.squeeze(1), batch_labels)\n",
+ " test_loss += loss.item()/len(test_loader)\n",
+ " return test_loss"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 74,
+ "execution_state": "idle",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "329425e6ee6d4189aefee350eba741c7",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAApBUlEQVR4nO3de1SVdb7H8Q+ge2MpaCFXt5LOqI0XaDARzTFnYZQeGmfVkbSj5LHSdByTVZN2EZtKTLPFjDfKyWpOmZSnPK0kOkQ5HY3GCWVWTV7G8DYVKJmgmCDs3/nj1D6zAwwM9tb9e7/W2n/w43nY34dnbL/n2ReCjDFGAAAAsEawvwcAAACAbxGAAAAAliEAAQAALEMAAgAAWIYABAAAsAwBCAAAYBkCEAAAwDIEIAAAgGUIQAAAAMsQgABwkQgKCtKvfvUrf48BIAAQgAAkSc8995yCgoIUFBSkbdu2Nfm+MUYul0tBQUH6l3/5F6/vnTp1StnZ2Ro8eLAuvfRSXX755UpMTNS8efP0+eefe7ZbvHix5z6au1VUVPjkWFtyrtlmzZrl19kAoD118vcAAC4soaGh2rBhg6655hqv9T/96U/6xz/+IafT6bV+9uxZ/exnP9OePXuUmZmpuXPn6tSpU/rb3/6mDRs26Je//KViY2O99lm7dq26du3a5L67d+/eQUfVeuPGjdO0adOarPfv398v8wBARyAAAXgZP368XnnlFf3+979Xp07//5+IDRs2KCkpSVVVVV7bb968Wbt27dKLL76oKVOmeH3vzJkzqq+vb3IfN998syIiIjrwKM5f//799W//9m/+HgMAOhRPAQPwMnnyZH355ZcqKiryrNXX12vTpk1NAk+SPv30U0nSqFGjmnwvNDRUYWFh7TLX4MGDNXbs2CbrbrdbcXFxuvnmmz1rGzduVFJSkrp166awsDANGTJEv/vd79plDkm69tprNXjwYJWWlmrkyJHq0qWLrrjiCuXl5TXZ9ujRo5oxY4aioqIUGhqqhIQEPf/8880ex+9+9zsNGTJEoaGh6tmzp66//np9+OGHTbbdvHmzBg8eLKfTqUGDBqmwsNDr+ydPntTdd9+t+Ph4OZ1ORUZGaty4cdq5c2e7/Q4AXNwIQABe4uPjlZKSopdeesmz9uabb6q6ulq33HJLk+379OkjSfrjH/8oY0yr7uP48eOqqqryup04ceKc+2RkZOi9995r8jrBbdu26fPPP/fMVlRUpMmTJ6tHjx56/PHHtXTpUl177bXavn17q2Y7c+ZMk9mqqqqaXMn86quvNH78eCUlJWnZsmXq1auX7rrrLq1fv96zzddff61rr71W//Ef/6Fbb71Vy5cvV3h4uG677bYmQTpjxgzdfffdcrlcevzxx7VgwQKFhobqgw8+aHK8s2fP1i233KJly5bpzJkzuummm/Tll196tpk1a5bWrl2rm266SWvWrNE999yjLl26aPfu3a36HQCwgAEAY8yzzz5rJJm//OUvZtWqVaZbt27m9OnTxhhj/vVf/9WMHTvWGGNMnz59zIQJEzz7nT592gwYMMBIMn369DG33XabeeaZZ0xlZWWT+8jOzjaSmr0NGDDgnPPt3bvXSDIrV670Wp89e7bp2rWrZ9Z58+aZsLAw09DQ0ObfQUuzSTIvvfSSZ7sxY8YYSWbFihWetbq6OpOYmGgiIyNNfX29McaY3NxcI8m88MILnu3q6+tNSkqK6dq1q6mpqTHGGPPOO+8YSebXv/51k5ncbrfXfA6Hw+zfv9+z9te//rXJ7yU8PNzMmTOnzccPwB5cAQTQxKRJk/T111/rjTfe0MmTJ/XGG280+/SvJHXp0kV//vOfde+990rfvJt4xowZiomJ0dy5c1VXV9dkn//8z/9UUVGR1+3ZZ58950z9+/dXYmKi8vPzPWuNjY3atGmT0tPT1aVLF+mbN5LU1tZ6PYXdFr/4xS+azFZUVNTk6edOnTpp5syZnq8dDodmzpypo0ePqrS0VJJUUFCg6OhoTZ482bNd586d9etf/1qnTp3Sn/70J8/vIygoSNnZ2U3mCQoK8vo6NTVV/fr183w9dOhQhYWFqby83LPWvXt3/fnPf/Z6BzYA/DPeBAKgiZ49eyo1NVUbNmzQ6dOn1djY6PUau+8KDw/XsmXLtGzZMh06dEjFxcV64okntGrVKoWHh+vRRx/12v5nP/vZeb0JJCMjQ/fff78+++wzxcXFaevWrTp69KgyMjI828yePVsvv/yybrjhBsXFxem6667TpEmTdP3117fqPnr16qXU1NTv3S42NlaXXnqp19q37xQ+ePCgRowYoUOHDunHP/6xgoO9/7/2lVdeKUk6dOiQ9M3rKGNjY3XZZZd97/327t27yVqPHj301Vdfeb5etmyZMjMz5XK5lJSUpPHjx2vatGnq27fv9/58AHbgCiCAZk2ZMkVvvvmm8vLydMMNN7T6I1r69Omjf//3f9f27dvVvXt3vfjii+02U0ZGhowxeuWVVyRJL7/8ssLDw73iLjIyUmVlZXr99dd144036t1339UNN9ygzMzMdpvDn0JCQppd/+fXX06aNEnl5eVauXKlYmNjtXz5cg0aNEhvvvmmDycFcCEjAAE065e//KWCg4P1wQcftPj077n06NFD/fr10xdffNFuM11xxRUaPny48vPz1dDQoFdffVUTJ05s8tmEDodD6enpWrNmjT799FPNnDlTf/zjH7V///52m+Xzzz9XbW2t19q+ffukb95Io29i+O9//7vcbrfXdnv27PF8X5L69eunzz//XMePH2+3+WJiYjR79mxt3rxZBw4c0OWXX67HHnus3X4+gIsbAQigWV27dtXatWu1ePFipaent7jdX//61yafDahvnt785JNPNGDAgHadKyMjQx988IHWr1+vqqoqr6d/JXm9G1aSgoODNXToUElq9vWI56uhoUFPPfWU5+v6+no99dRT6tmzp5KSkqRvPlOxoqLC63WLDQ0NWrlypbp27aoxY8ZIkm666SYZY/Twww83uZ/WvrP6W42NjaqurvZai4yMVGxsbLseP4CLG68BBNCi1jxtWlRUpOzsbN14440aMWKEunbtqvLycq1fv151dXVavHhxk302bdrU7F8CGTdunKKios55f5MmTdI999yje+65R5dddlmT1+vdfvvtOn78uH7+85+rV69eOnTokFauXKnExETPa+/OZd++fXrhhRearEdFRWncuHGer2NjY/X444/r4MGD6t+/v/Lz81VWVqann35anTt3liTdeeedeuqpp3TbbbeptLRU8fHx2rRpk7Zv367c3Fx169ZNkjR27FhNnTpVv//97/X3v/9d119/vdxut/7nf/5HY8eObdPf/z158qR69eqlm2++WQkJCeratavefvtt/eUvf9GKFSta/XMABDh/vw0ZwIXhnz8G5ly++zEw5eXlZtGiRWbEiBEmMjLSdOrUyfTs2dNMmDDBvPPOO177nutjYCSZd999t1Wzjho1ykgyt99+e5Pvbdq0yVx33XUmMjLSOBwO07t3bzNz5kzzxRdffO/PPddsY8aM8Ww3ZswYM2jQIPPhhx+alJQUExoaavr06WNWrVrV5GdWVlaa6dOnm4iICONwOMyQIUPMs88+22S7hoYGs3z5cjNw4EDjcDhMz549zQ033GBKS0u95mvu41369OljMjMzjfnm42juvfdek5CQYLp162YuvfRSk5CQYNasWfO9xw/AHkGmrc8vAIDlrr32WlVVVenjjz/29ygAcF54DSAAAIBlCEAAAADLEIAAAACW4TWAAAAAluEKIAAAgGUIQAAAAMsQgAAAAJYhAAEAACxDAAIAAFiGAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAyxCAAAAAliEAAQAALEMAAgAAWIYABAAAsAwBCAAAYBkCEAAAwDIBE4Dvvfee0tPTFRsbq6CgIG3evPl799m6dat++tOfyul06kc/+pGee+45n8wKAADgTwETgLW1tUpISNDq1atbtf2BAwc0YcIEjR07VmVlZbr77rt1++2366233urwWQEAAPwpyBhj/D1EewsKCtJrr72miRMntrjNfffdpy1btujjjz/2rN1yyy06ceKECgsLfTQpAACA7wXMFcC2KikpUWpqqtdaWlqaSkpK/DYTAACAL3Ty9wD+UlFRoaioKK+1qKgo1dTU6Ouvv1aXLl2a7FNXV6e6ujrP1263W8ePH9fll1+uoKAgn8wNAAB+GGOMTp48qdjYWAUH23ktzNoAPB85OTl6+OGH/T0GAABoB0eOHFGvXr38PYZfWBuA0dHRqqys9FqrrKxUWFhYs1f/JGnhwoXKysryfF1dXa3evXvryJEjCgsL6/CZAQDAD1dTUyOXy6Vu3br5exS/sTYAU1JSVFBQ4LVWVFSklJSUFvdxOp1yOp1N1sPCwghAAAAuMja/fCtgnvg+deqUysrKVFZWJn3zMS9lZWU6fPiw9M3Vu2nTpnm2nzVrlsrLy/Wb3/xGe/bs0Zo1a/Tyyy9r/vz5fjsGAAAAXwiYAPzwww911VVX6aqrrpIkZWVl6aqrrtKiRYskSV988YUnBiXpiiuu0JYtW1RUVKSEhAStWLFCf/jDH5SWlua3YwAAAPCFgPwcQF+pqalReHi4qqureQoYAICLBI/fAXQFEAAAAK1DAAIAAFiGAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAyxCAAAAAliEAAQAALEMAAgAAWIYABAAAsAwBCAAAYBkCEAAAwDIEIAAAgGUIQAAAAMsQgAAAAJYhAAEAACxDAAIAAFiGAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAyxCAAAAAliEAAQAALEMAAgAAWIYABAAAsAwBCAAAYBkCEAAAwDIEIAAAgGUIQAAAAMsQgAAAAJYhAAEAACxDAAIAAFiGAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAywRUAK5evVrx8fEKDQ1VcnKyduzYcc7tc3NzNWDAAHXp0kUul0vz58/XmTNnfDYvAACAPwRMAObn5ysrK0vZ2dnauXOnEhISlJaWpqNHjza7/YYNG7RgwQJlZ2dr9+7deuaZZ5Sfn6/777/f57MDAAD4UsAE4JNPPqk77rhD06dP109+8hPl5eXpkksu0fr165vd/v3339eoUaM0ZcoUxcfH67rrrtPkyZO/96ohAADAxS4gArC+vl6lpaVKTU31rAUHBys1NVUlJSXN7jNy5EiVlpZ6gq+8vFwFBQUaP368z+YGAADwh07+HqA9VFVVqbGxUVFRUV7rUVFR2rNnT7P7TJkyRVVVVbrmmmtkjFFDQ4NmzZp1zqeA6+rqVFdX5/m6pqamHY8CAADANwLiCuD52Lp1q5YsWaI1a9Zo586devXVV7VlyxY98sgjLe6Tk5Oj8PBwz83lcvl0ZgAAgPYQZIwx/h7ih6qvr9cll1yiTZs2aeLEiZ71zMxMnThxQv/1X//VZJ/Ro0drxIgRWr58uWfthRde0J133qlTp04pOLhpGzd3BdDlcqm6ulphYWEdcmwAAKB91dTUKDw83OrH74C4AuhwOJSUlKTi4mLPmtvtVnFxsVJSUprd5/Tp000iLyQkRJLUUhM7nU6FhYV53QAAAC42AfEaQEnKyspSZmamhg0bpuHDhys3N1e1tbWaPn26JGnatGmKi4tTTk6OJCk9PV1PPvmkrrrqKiUnJ2v//v166KGHlJ6e7glBAACAQBQwAZiRkaFjx45p0aJFqqioUGJiogoLCz1vDDl8+LDXFb8HH3xQQUFBevDBB/XZZ5+pZ8+eSk9P12OPPebHowAAAOh4AfEaQH/hNQQAAFx8ePwOkNcAAgAAoPUIQAAAAMsQgAAAAJYhAAEAACxDAAIAAFiGAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAyxCAAAAAliEAAQAALEMAAgAAWIYABAAAsAwBCAAAYBkCEAAAwDIEIAAAgGUIQAAAAMsQgAAAAJYhAAEAACxDAAIAAFiGAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAyxCAAAAAliEAAQAALEMAAgAAWIYABAAAsAwBCAAAYBkCEAAAwDIEIAAAgGUIQAAAAMsQgAAAAJYhAAEAACxDAAIAAFiGAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgmYAKwNWrVys+Pl6hoaFKTk7Wjh07zrn9iRMnNGfOHMXExMjpdKp///4qKCjw2bwAAAD+0MnfA7SX/Px8ZWVlKS8vT8nJycrNzVVaWpr27t2ryMjIJtvX19dr3LhxioyM1KZNmxQXF6dDhw6pe/fufpkfAADAV4KMMcbfQ7SH5ORkXX311Vq1apUkye12y+Vyae7cuVqwYEGT7fPy8rR8+XLt2bNHnTt3Pq/7rKmpUXh4uKqrqxUWFvaDjwEAAHQ8Hr8D5Cng+vp6lZaWKjU11bMWHBys1NRUlZSUNLvP66+/rpSUFM2ZM0dRUVEaPHiwlixZosbGxhbvp66uTjU1NV43AACAi01ABGBVVZUaGxsVFRXltR4VFaWKiopm9ykvL9emTZvU2NiogoICPfTQQ1qxYoUeffTRFu8nJydH4eHhnpvL5Wr3YwEAAOhoARGA58PtdisyMlJPP/20kpKSlJGRoQceeEB5eXkt7rNw4UJVV1d7bkeOHPHpzAAAAO0hIN4EEhERoZCQEFVWVnqtV1ZWKjo6utl9YmJi1LlzZ4WEhHjWrrzySlVUVKi+vl4Oh6PJPk6nU06nswOOAAAAwHcC4gqgw+FQUlKSiouLPWtut1vFxcVKSUlpdp9Ro0Zp//79crvdnrV9+/YpJiam2fgDAAAIFAERgJKUlZWldevW6fnnn9fu3bt11113qba2VtOnT5ckTZs2TQsXLvRsf9ddd+n48eOaN2+e9u3bpy1btmjJkiWaM2eOH48CAACg4wXEU8CSlJGRoWPHjmnRokWqqKhQYmKiCgsLPW8MOXz4sIKD/793XS6X3nrrLc2fP19Dhw5VXFyc5s2bp/vuu8+PRwEAANDxAuZzAP2BzxECAODiw+N3AD0FDAAAgNYhAAEAACxDAAIAAFiGAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAyxCAAAAAliEAAQAALEMAAgAAWIYABAAAsAwBCAAAYBkCEAAAwDIEIAAAgGUIQAAAAMsQgAAAAJYhAAEAACxDAAIAAFiGAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAyxCAAAAAliEAAQAALEMAAgAAWIYABAAAsAwBCAAAYBkCEAAAwDIEIAAAgGUIQAAAAMsQgAAAAJYhAAEAACxDAAIAAFiGAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQIqAFevXq34+HiFhoYqOTlZO3bsaNV+GzduVFBQkCZOnNjhMwIAAPhbwARgfn6+srKylJ2drZ07dyohIUFpaWk6evToOfc7ePCg7rnnHo0ePdpnswIAAPhTwATgk08+qTvuuEPTp0/XT37yE+Xl5emSSy7R+vXrW9ynsbFRt956qx5++GH17dvXp/MCAAD4S0AEYH19vUpLS5WamupZCw4OVmpqqkpKSlrc77e//a0iIyM1Y8aMVt1PXV2dampqvG4AAAAXm4AIwKqqKjU2NioqKsprPSoqShUVFc3us23bNj3zzDNat25dq+8nJydH4eHhnpvL5frBswMAAPhaQARgW508eVJTp07VunXrFBER0er9Fi5cqOrqas/tyJEjHTonAABAR+jk7wHaQ0REhEJCQlRZWem1XllZqejo6Cbbf/rppzp48KDS09M9a263W5LUqVMn7d27V/369Wuyn9PplNPp7JBjAAAA8JWAuALocDiUlJSk4uJiz5rb7VZxcbFSUlKabD9w4EB99NFHKisr89xuvPFGjR07VmVlZTy1CwAAAlpAXAGUpKysLGVmZmrYsGEaPny4cnNzVVtbq+nTp0uSpk2bpri4OOXk5Cg0NFSDBw/22r979+6S1GQdAAAg0ARMAGZkZOjYsWNatGiRKioqlJiYqMLCQs8bQw4fPqzg4IC44AkAAPCDBBljjL+HuFjV1NQoPDxc1dXVCgsL8/c4AACgFXj8DpDXAAIAAKD1CEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAyxCAAAAAliEAAQAALEMAAgAAWIYABAAAsAwBCAAAYBkCEAAAwDIEIAAAgGUIQAAAAMsQgAAAAJYhAAEAACxDAAIAAFiGAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAyxCAAAAAliEAAQAALEMAAgAAWIYABAAAsAwBCAAAYBkCEAAAwDIEIAAAgGUIQAAAAMsQgAAAAJYhAAEAACxDAAIAAFiGAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAyxCAAAAAliEAAQAALEMAAgAAWIYABAAAsAwBCAAAYJmACsDVq1crPj5eoaGhSk5O1o4dO1rcdt26dRo9erR69OihHj16KDU19ZzbAwAABIqACcD8/HxlZWUpOztbO3fuVEJCgtLS0nT06NFmt9+6dasmT56sd999VyUlJXK5XLruuuv02Wef+Xx2AAAAXwoyxhh/D9EekpOTdfXVV2vVqlWSJLfbLZfLpblz52rBggXfu39jY6N69OihVatWadq0aa26z5qaGoWHh6u6ulphYWE/+BgAAEDH4/E7QK4A1tfXq7S0VKmpqZ614OBgpaamqqSkpFU/4/Tp0zp79qwuu+yyFrepq6tTTU2N1w0AAOBiExABWFVVpcbGRkVFRXmtR0VFqaKiolU/47777lNsbKxXRH5XTk6OwsPDPTeXy/WDZwcAAPC1gAjAH2rp0qXauHGjXnvtNYWGhra43cKFC1VdXe25HTlyxKdzAgAAtIdO/h6gPURERCgkJESVlZVe65WVlYqOjj7nvk888YSWLl2qt99+W0OHDj3ntk6nU06ns11mBgAA8JeAuALocDiUlJSk4uJiz5rb7VZxcbFSUlJa3G/ZsmV65JFHVFhYqGHDhvloWgAAAP8KiCuAkpSVlaXMzEwNGzZMw4cPV25urmprazV9+nRJ0rRp0xQXF6ecnBxJ0uOPP65FixZpw4YNio+P97xWsGvXruratatfjwUAAKAjBUwAZmRk6NixY1q0aJEqKiqUmJiowsJCzxtDDh8+rODg/7/guXbtWtXX1+vmm2/2+jnZ2dlavHixz+cHAADwlYD5HEB/4HOEAAC4+PD4HSCvAQQAAEDrEYAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAyxCAAAAAliEAAQAALEMAAgAAWIYABAAAsAwBCAAAYBkCEAAAwDIEIAAAgGUIQAAAAMsQgAAAAJYhAAEAACxDAAIAAFiGAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAyxCAAAAAliEAAQAALEMAAgAAWIYABAAAsAwBCAAAYBkCEAAAwDIEIAAAgGUIQAAAAMsQgAAAAJYhAAEAACxDAAIAAFiGAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAyxCAAAAAliEAAQAALEMAAgAAWIYABAAAsAwBCAAAYBkCEAAAwDIBFYCrV69WfHy8QkNDlZycrB07dpxz+1deeUUDBw5UaGiohgwZooKCAp/NCgAA4C8BE4D5+fnKyspSdna2du7cqYSEBKWlpeno0aPNbv/+++9r8uTJmjFjhnbt2qWJEydq4sSJ+vjjj30+OwAAgC8FGWOMv4doD8nJybr66qu1atUqSZLb7ZbL5dLcuXO1YMGCJttnZGSotrZWb7zxhmdtxIgRSkxMVF5eXqvus6amRuHh4aqurlZYWFg7Hg0AAOgoPH5Lnfw9QHuor69XaWmpFi5c6FkLDg5WamqqSkpKmt2npKREWVlZXmtpaWnavHlzi/dTV1enuro6z9fV1dXSN/9DAgAAF4dvH7cD5BrYeQmIAKyqqlJjY6OioqK81qOiorRnz55m96moqGh2+4qKihbvJycnRw8//HCTdZfLdd6zAwAA//jyyy8VHh7u7zH8IiAC0FcWLlzoddXwxIkT6tOnjw4fPmzt/4AuFDU1NXK5XDpy5Ii1l/MvFJyLCwvn48LBubhwVFdXq3fv3rrsssv8PYrfBEQARkREKCQkRJWVlV7rlZWVio6Obnaf6OjoNm0vSU6nU06ns8l6eHg4/5gvEGFhYZyLCwTn4sLC+bhwcC4uHMHBAfNe2DYLiCN3OBxKSkpScXGxZ83tdqu4uFgpKSnN7pOSkuK1vSQVFRW1uD0AAECgCIgrgJKUlZWlzMxMDRs2TMOHD1dubq5qa2s1ffp0SdK0adMUFxennJwcSdK8efM0ZswYrVixQhMmTNDGjRv14Ycf6umnn/bzkQAAAHSsgAnAjIwMHTt2TIsWLVJFRYUSExNVWFjoeaPH4cOHvS71jhw5Uhs2bNCDDz6o+++/Xz/+8Y+1efNmDR48uNX36XQ6lZ2d3ezTwvAtzsWFg3NxYeF8XDg4FxcOzkUAfQ4gAAAAWicgXgMIAACA1iMAAQAALEMAAgAAWIYABAAAsAwB+D1Wr16t+Ph4hYaGKjk5WTt27Djn9q+88ooGDhyo0NBQDRkyRAUFBT6bNdC15VysW7dOo0ePVo8ePdSjRw+lpqZ+77lD67X138W3Nm7cqKCgIE2cOLHDZ7RFW8/FiRMnNGfOHMXExMjpdKp///78d6odtfV85ObmasCAAerSpYtcLpfmz5+vM2fO+GzeQPXee+8pPT1dsbGxCgoK0ubNm793n61bt+qnP/2pnE6nfvSjH+m5557zyax+Y9CijRs3GofDYdavX2/+9re/mTvuuMN0797dVFZWNrv99u3bTUhIiFm2bJn55JNPzIMPPmg6d+5sPvroI5/PHmjaei6mTJliVq9ebXbt2mV2795tbrvtNhMeHm7+8Y9/+Hz2QNPWc/GtAwcOmLi4ODN69Gjzi1/8wmfzBrK2nou6ujozbNgwM378eLNt2zZz4MABs3XrVlNWVubz2QNRW8/Hiy++aJxOp3nxxRfNgQMHzFtvvWViYmLM/PnzfT57oCkoKDAPPPCAefXVV40k89prr51z+/LycnPJJZeYrKws88knn5iVK1eakJAQU1hY6LOZfY0APIfhw4ebOXPmeL5ubGw0sbGxJicnp9ntJ02aZCZMmOC1lpycbGbOnNnhswa6tp6L72poaDDdunUzzz//fAdOaYfzORcNDQ1m5MiR5g9/+IPJzMwkANtJW8/F2rVrTd++fU19fb0Pp7RHW8/HnDlzzM9//nOvtaysLDNq1KgOn9UmrQnA3/zmN2bQoEFeaxkZGSYtLa2Dp/MfngJuQX19vUpLS5WamupZCw4OVmpqqkpKSprdp6SkxGt7SUpLS2txe7TO+ZyL7zp9+rTOnj1r9R/+bg/ney5++9vfKjIyUjNmzPDRpIHvfM7F66+/rpSUFM2ZM0dRUVEaPHiwlixZosbGRh9OHpjO53yMHDlSpaWlnqeJy8vLVVBQoPHjx/tsbvwfGx+/A+YvgbS3qqoqNTY2ev6SyLeioqK0Z8+eZvepqKhodvuKiooOnTXQnc+5+K777rtPsbGxTf6Bo23O51xs27ZNzzzzjMrKynw0pR3O51yUl5frnXfe0a233qqCggLt379fs2fP1tmzZ5Wdne2jyQPT+ZyPKVOmqKqqStdcc42MMWpoaNCsWbN0//33+2hqfKulx++amhp9/fXX6tKli99m6yhcAUTAW7p0qTZu3KjXXntNoaGh/h7HKidPntTUqVO1bt06RURE+Hsc67ndbkVGRurpp59WUlKSMjIy9MADDygvL8/fo1lp69atWrJkidasWaOdO3fq1Vdf1ZYtW/TII4/4ezRYgCuALYiIiFBISIgqKyu91isrKxUdHd3sPtHR0W3aHq1zPufiW0888YSWLl2qt99+W0OHDu3gSQNfW8/Fp59+qoMHDyo9Pd2z5na7JUmdOnXS3r171a9fPx9MHnjO599FTEyMOnfurJCQEM/alVdeqYqKCtXX18vhcHT43IHqfM7HQw89pKlTp+r222+XJA0ZMkS1tbW688479cADD3j9/Xp0rJYev8PCwgLy6p+4Atgyh8OhpKQkFRcXe9bcbreKi4uVkpLS7D4pKSle20tSUVFRi9ujdc7nXEjSsmXL9Mgjj6iwsFDDhg3z0bSBra3nYuDAgfroo49UVlbmud14440aO3asysrK5HK5fHwEgeN8/l2MGjVK+/fv90S4JO3bt08xMTHE3w90Pufj9OnTTSLv2zj/v/cuwFesfPz297tQLmQbN240TqfTPPfcc+aTTz4xd955p+nevbupqKgwxhgzdepUs2DBAs/227dvN506dTJPPPGE2b17t8nOzuZjYNpJW8/F0qVLjcPhMJs2bTJffPGF53by5Ek/HkVgaOu5+C7eBdx+2nouDh8+bLp162Z+9atfmb1795o33njDREZGmkcffdSPRxE42no+srOzTbdu3cxLL71kysvLzX//93+bfv36mUmTJvnxKALDyZMnza5du8yuXbuMJPPkk0+aXbt2mUOHDhljjFmwYIGZOnWqZ/tvPwbm3nvvNbt37zarV6/mY2Bst3LlStO7d2/jcDjM8OHDzQcffOD53pgxY0xmZqbX9i+//LLp37+/cTgcZtCgQWbLli1+mDowteVc9OnTx0hqcsvOzvbT9IGlrf8u/hkB2L7aei7ef/99k5ycbJxOp+nbt6957LHHTENDgx8mD0xtOR9nz541ixcvNv369TOhoaHG5XKZ2bNnm6+++spP0weOd999t9nHgG9//5mZmWbMmDFN9klMTDQOh8P07dvXPPvss36a3jeCDNeZAQAArMJrAAEAACxDAAIAAFiGAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADLEIAAAACWIQABAAAsQwACAABYhgAEAACwDAEIAABgGQIQAADAMgQgAACAZQhAAAAAyxCAAAAAliEAAQAALEMAAgAAWIYABAAAsAwBCAAAYBkCEAAAwDIEIAAAgGUIQAAAAMsQgAAAAJYhAAEAACxDAAIAAFiGAAQAALAMAQgAAGAZAhAAAMAyBCAAAIBlCEAAAADL/C88oWm6KoRVvwAAAABJRU5ErkJggg==",
+ "text/html": [
+ "\n",
+ " <div style=\"display: inline-block;\">\n",
+ " <div class=\"jupyter-widgets widget-label\" style=\"text-align: center;\">\n",
+ " Figure\n",
+ " </div>\n",
+ " <img src='' width=640.0/>\n",
+ " </div>\n",
+ " "
+ ],
+ "text/plain": [
+ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# This has to be in a separate cell for some weird event loop reasons\n",
+ "fig,ax = plt.subplots()\n",
+ "fig.suptitle('MSE vs Epochs')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "execution_state": "running",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
@@ -480,74 +546,173 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "Epoch 1/50 \t Train Err: 0.1621 \t Test Err: 0.1208 \t baseline err: 0.1290\n",
- "Epoch 2/50 \t Train Err: 0.1266 \t Test Err: 0.1201 \t baseline err: 0.1290\n",
- "Epoch 3/50 \t Train Err: 0.1224 \t Test Err: 0.1199 \t baseline err: 0.1290\n",
- "Epoch 4/50 \t Train Err: 0.1190 \t Test Err: 0.1214 \t baseline err: 0.1290\n",
- "Epoch 5/50 \t Train Err: 0.1167 \t Test Err: 0.1164 \t baseline err: 0.1290\n",
- "Epoch 6/50 \t Train Err: 0.1154 \t Test Err: 0.1156 \t baseline err: 0.1290\n",
- "Epoch 7/50 \t Train Err: 0.1146 \t Test Err: 0.1131 \t baseline err: 0.1290\n",
- "Epoch 8/50 \t Train Err: 0.1140 \t Test Err: 0.1145 \t baseline err: 0.1290\n",
- "Epoch 9/50 \t Train Err: 0.1135 \t Test Err: 0.1144 \t baseline err: 0.1290\n",
- "Epoch 10/50 \t Train Err: 0.1134 \t Test Err: 0.1160 \t baseline err: 0.1290\n",
- "Epoch 11/50 \t Train Err: 0.1134 \t Test Err: 0.1160 \t baseline err: 0.1290\n",
- "Epoch 12/50 \t Train Err: 0.1129 \t Test Err: 0.1137 \t baseline err: 0.1290\n",
- "Epoch 13/50 \t Train Err: 0.1131 \t Test Err: 0.1122 \t baseline err: 0.1290\n",
- "Epoch 14/50 \t Train Err: 0.1125 \t Test Err: 0.1133 \t baseline err: 0.1290\n",
- "Epoch 15/50 \t Train Err: 0.1121 \t Test Err: 0.1119 \t baseline err: 0.1290\n",
- "Epoch 16/50 \t Train Err: 0.1120 \t Test Err: 0.1129 \t baseline err: 0.1290\n",
- "Epoch 17/50 \t Train Err: 0.1123 \t Test Err: 0.1123 \t baseline err: 0.1290\n",
- "Epoch 18/50 \t Train Err: 0.1120 \t Test Err: 0.1119 \t baseline err: 0.1290\n",
- "Epoch 19/50 \t Train Err: 0.1117 \t Test Err: 0.1148 \t baseline err: 0.1290\n",
- "Epoch 20/50 \t Train Err: 0.1119 \t Test Err: 0.1136 \t baseline err: 0.1290\n",
- "Epoch 21/50 \t Train Err: 0.1117 \t Test Err: 0.1120 \t baseline err: 0.1290\n",
- "Epoch 22/50 \t Train Err: 0.1114 \t Test Err: 0.1123 \t baseline err: 0.1290\n",
- "Epoch 23/50 \t Train Err: 0.1111 \t Test Err: 0.1121 \t baseline err: 0.1290\n",
- "Epoch 24/50 \t Train Err: 0.1093 \t Test Err: 0.1061 \t baseline err: 0.1290\n",
- "Epoch 25/50 \t Train Err: 0.1044 \t Test Err: 0.1012 \t baseline err: 0.1290\n",
- "Epoch 26/50 \t Train Err: 0.1012 \t Test Err: 0.1003 \t baseline err: 0.1290\n",
- "Epoch 27/50 \t Train Err: 0.0985 \t Test Err: 0.0964 \t baseline err: 0.1290\n",
- "Epoch 28/50 \t Train Err: 0.0957 \t Test Err: 0.0942 \t baseline err: 0.1290\n",
- "Epoch 29/50 \t Train Err: 0.0947 \t Test Err: 0.0935 \t baseline err: 0.1290\n",
- "Epoch 30/50 \t Train Err: 0.0931 \t Test Err: 0.0941 \t baseline err: 0.1290\n",
- "Epoch 31/50 \t Train Err: 0.0920 \t Test Err: 0.0916 \t baseline err: 0.1290\n",
- "Epoch 32/50 \t Train Err: 0.0893 \t Test Err: 0.0857 \t baseline err: 0.1290\n",
- "Epoch 33/50 \t Train Err: 0.0868 \t Test Err: 0.0814 \t baseline err: 0.1290\n",
- "Epoch 34/50 \t Train Err: 0.0827 \t Test Err: 0.0785 \t baseline err: 0.1290\n",
- "Epoch 35/50 \t Train Err: 0.0770 \t Test Err: 0.0720 \t baseline err: 0.1290\n",
- "Epoch 36/50 \t Train Err: 0.0713 \t Test Err: 0.0646 \t baseline err: 0.1290\n",
- "Epoch 37/50 \t Train Err: 0.0642 \t Test Err: 0.0540 \t baseline err: 0.1290\n",
- "Epoch 38/50 \t Train Err: 0.0588 \t Test Err: 0.0501 \t baseline err: 0.1290\n",
- "Epoch 39/50 \t Train Err: 0.0543 \t Test Err: 0.0456 \t baseline err: 0.1290\n",
- "Epoch 40/50 \t Train Err: 0.0488 \t Test Err: 0.0366 \t baseline err: 0.1290\n",
- "Epoch 41/50 \t Train Err: 0.0416 \t Test Err: 0.0315 \t baseline err: 0.1290\n",
- "Epoch 42/50 \t Train Err: 0.0360 \t Test Err: 0.0214 \t baseline err: 0.1290\n",
- "Epoch 43/50 \t Train Err: 0.0305 \t Test Err: 0.0172 \t baseline err: 0.1290\n",
- "Epoch 44/50 \t Train Err: 0.0239 \t Test Err: 0.0116 \t baseline err: 0.1290\n",
- "Epoch 45/50 \t Train Err: 0.0205 \t Test Err: 0.0117 \t baseline err: 0.1290\n",
- "Epoch 46/50 \t Train Err: 0.0181 \t Test Err: 0.0092 \t baseline err: 0.1290\n",
- "Epoch 47/50 \t Train Err: 0.0164 \t Test Err: 0.0100 \t baseline err: 0.1290\n",
- "Epoch 48/50 \t Train Err: 0.0155 \t Test Err: 0.0081 \t baseline err: 0.1290\n",
- "Epoch 49/50 \t Train Err: 0.0141 \t Test Err: 0.0074 \t baseline err: 0.1290\n",
- "Epoch 50/50 \t Train Err: 0.0129 \t Test Err: 0.0075 \t baseline err: 0.1290\n"
+ "Epoch 1/1000 \t Train Err: 88.4438 \t Test Err: 72.6466 \t baseline err: 141.4637\n",
+ "Epoch 2/1000 \t Train Err: 72.6060 \t Test Err: 75.4987 \t baseline err: 141.4637\n",
+ "Epoch 3/1000 \t Train Err: 72.6729 \t Test Err: 73.9506 \t baseline err: 141.4637\n",
+ "Epoch 6/1000 \t Train Err: 72.7866 \t Test Err: 72.4612 \t baseline err: 141.4637\n",
+ "Epoch 7/1000 \t Train Err: 73.0815 \t Test Err: 74.9404 \t baseline err: 141.4637\n",
+ "Epoch 8/1000 \t Train Err: 72.8054 \t Test Err: 73.7412 \t baseline err: 141.4637\n",
+ "Epoch 9/1000 \t Train Err: 73.0514 \t Test Err: 82.7393 \t baseline err: 141.4637\n",
+ "Epoch 10/1000 \t Train Err: 73.0291 \t Test Err: 72.2577 \t baseline err: 141.4637\n",
+ "Epoch 11/1000 \t Train Err: 73.0081 \t Test Err: 72.4944 \t baseline err: 141.4637\n",
+ "Epoch 12/1000 \t Train Err: 72.6500 \t Test Err: 75.2036 \t baseline err: 141.4637\n",
+ "Epoch 13/1000 \t Train Err: 72.6255 \t Test Err: 73.4970 \t baseline err: 141.4637\n",
+ "Epoch 14/1000 \t Train Err: 72.6803 \t Test Err: 74.0005 \t baseline err: 141.4637\n",
+ "Epoch 15/1000 \t Train Err: 72.7032 \t Test Err: 73.0177 \t baseline err: 141.4637\n",
+ "Epoch 16/1000 \t Train Err: 72.7891 \t Test Err: 75.1899 \t baseline err: 141.4637\n",
+ "Epoch 17/1000 \t Train Err: 74.0133 \t Test Err: 71.7237 \t baseline err: 141.4637\n",
+ "Epoch 18/1000 \t Train Err: 72.7520 \t Test Err: 75.8566 \t baseline err: 141.4637\n",
+ "Epoch 19/1000 \t Train Err: 72.5771 \t Test Err: 74.9531 \t baseline err: 141.4637\n",
+ "Epoch 20/1000 \t Train Err: 72.6114 \t Test Err: 73.3918 \t baseline err: 141.4637\n",
+ "Epoch 21/1000 \t Train Err: 71.5844 \t Test Err: 57.3829 \t baseline err: 141.4637\n",
+ "Epoch 22/1000 \t Train Err: 56.8166 \t Test Err: 60.2253 \t baseline err: 141.4637\n",
+ "Epoch 23/1000 \t Train Err: 58.2172 \t Test Err: 56.7333 \t baseline err: 141.4637\n",
+ "Epoch 24/1000 \t Train Err: 56.1189 \t Test Err: 55.7485 \t baseline err: 141.4637\n",
+ "Epoch 25/1000 \t Train Err: 55.5304 \t Test Err: 56.2083 \t baseline err: 141.4637\n",
+ "Epoch 26/1000 \t Train Err: 68.7059 \t Test Err: 72.6976 \t baseline err: 141.4637\n",
+ "Epoch 27/1000 \t Train Err: 72.7020 \t Test Err: 73.1029 \t baseline err: 141.4637\n",
+ "Epoch 28/1000 \t Train Err: 72.4459 \t Test Err: 73.5617 \t baseline err: 141.4637\n",
+ "Epoch 29/1000 \t Train Err: 72.5310 \t Test Err: 75.8304 \t baseline err: 141.4637\n",
+ "Epoch 30/1000 \t Train Err: 72.5256 \t Test Err: 73.0845 \t baseline err: 141.4637\n",
+ "Epoch 31/1000 \t Train Err: 72.4667 \t Test Err: 72.9080 \t baseline err: 141.4637\n",
+ "Epoch 32/1000 \t Train Err: 72.5369 \t Test Err: 72.6703 \t baseline err: 141.4637\n",
+ "Epoch 33/1000 \t Train Err: 72.4685 \t Test Err: 74.7614 \t baseline err: 141.4637\n",
+ "Epoch 34/1000 \t Train Err: 72.4926 \t Test Err: 74.0886 \t baseline err: 141.4637\n",
+ "Epoch 35/1000 \t Train Err: 71.3339 \t Test Err: 55.4380 \t baseline err: 141.4637\n",
+ "Epoch 36/1000 \t Train Err: 60.7870 \t Test Err: 59.4468 \t baseline err: 141.4637\n",
+ "Epoch 37/1000 \t Train Err: 55.6557 \t Test Err: 56.7001 \t baseline err: 141.4637\n",
+ "Epoch 38/1000 \t Train Err: 55.4896 \t Test Err: 55.8308 \t baseline err: 141.4637\n",
+ "Epoch 39/1000 \t Train Err: 55.6962 \t Test Err: 58.9664 \t baseline err: 141.4637\n",
+ "Epoch 40/1000 \t Train Err: 55.5519 \t Test Err: 57.7560 \t baseline err: 141.4637\n",
+ "Epoch 41/1000 \t Train Err: 55.5370 \t Test Err: 56.6866 \t baseline err: 141.4637\n",
+ "Epoch 42/1000 \t Train Err: 55.4300 \t Test Err: 56.3424 \t baseline err: 141.4637\n",
+ "Epoch 43/1000 \t Train Err: 55.4922 \t Test Err: 56.3748 \t baseline err: 141.4637\n",
+ "Epoch 44/1000 \t Train Err: 55.6073 \t Test Err: 59.0728 \t baseline err: 141.4637\n",
+ "Epoch 45/1000 \t Train Err: 55.5497 \t Test Err: 58.5533 \t baseline err: 141.4637\n",
+ "Epoch 46/1000 \t Train Err: 55.4837 \t Test Err: 57.2847 \t baseline err: 141.4637\n",
+ "Epoch 47/1000 \t Train Err: 55.4173 \t Test Err: 57.1441 \t baseline err: 141.4637\n",
+ "Epoch 48/1000 \t Train Err: 55.4576 \t Test Err: 55.7806 \t baseline err: 141.4637\n",
+ "Epoch 49/1000 \t Train Err: 55.5678 \t Test Err: 56.6457 \t baseline err: 141.4637\n",
+ "Epoch 50/1000 \t Train Err: 55.5537 \t Test Err: 60.0365 \t baseline err: 141.4637\n",
+ "Epoch 51/1000 \t Train Err: 55.5123 \t Test Err: 55.6848 \t baseline err: 141.4637\n",
+ "Epoch 52/1000 \t Train Err: 55.5872 \t Test Err: 55.8084 \t baseline err: 141.4637\n",
+ "Epoch 53/1000 \t Train Err: 55.4548 \t Test Err: 56.5655 \t baseline err: 141.4637\n",
+ "Epoch 54/1000 \t Train Err: 55.5124 \t Test Err: 56.3470 \t baseline err: 141.4637\n",
+ "Epoch 55/1000 \t Train Err: 55.4518 \t Test Err: 57.6169 \t baseline err: 141.4637\n",
+ "Epoch 56/1000 \t Train Err: 55.4073 \t Test Err: 55.6467 \t baseline err: 141.4637\n",
+ "Epoch 57/1000 \t Train Err: 55.4745 \t Test Err: 56.3436 \t baseline err: 141.4637\n",
+ "Epoch 58/1000 \t Train Err: 55.4862 \t Test Err: 56.2289 \t baseline err: 141.4637\n",
+ "Epoch 59/1000 \t Train Err: 55.5221 \t Test Err: 55.3599 \t baseline err: 141.4637\n",
+ "Epoch 60/1000 \t Train Err: 55.4843 \t Test Err: 55.3953 \t baseline err: 141.4637\n",
+ "Epoch 61/1000 \t Train Err: 55.5095 \t Test Err: 56.4781 \t baseline err: 141.4637\n",
+ "Epoch 62/1000 \t Train Err: 55.6532 \t Test Err: 56.4005 \t baseline err: 141.4637\n",
+ "Epoch 63/1000 \t Train Err: 55.5240 \t Test Err: 57.4780 \t baseline err: 141.4637\n",
+ "Epoch 64/1000 \t Train Err: 55.4915 \t Test Err: 55.8880 \t baseline err: 141.4637\n",
+ "Epoch 65/1000 \t Train Err: 55.4006 \t Test Err: 56.1770 \t baseline err: 141.4637\n",
+ "Epoch 66/1000 \t Train Err: 55.3153 \t Test Err: 56.3041 \t baseline err: 141.4637\n",
+ "Epoch 67/1000 \t Train Err: 55.3105 \t Test Err: 55.7897 \t baseline err: 141.4637\n",
+ "Epoch 68/1000 \t Train Err: 55.9038 \t Test Err: 54.9242 \t baseline err: 141.4637\n",
+ "Epoch 69/1000 \t Train Err: 55.4002 \t Test Err: 55.2162 \t baseline err: 141.4637\n",
+ "Epoch 70/1000 \t Train Err: 55.5265 \t Test Err: 54.4618 \t baseline err: 141.4637\n",
+ "Epoch 71/1000 \t Train Err: 55.4598 \t Test Err: 56.2988 \t baseline err: 141.4637\n",
+ "Epoch 72/1000 \t Train Err: 55.4995 \t Test Err: 55.1318 \t baseline err: 141.4637\n",
+ "Epoch 73/1000 \t Train Err: 55.5224 \t Test Err: 55.6233 \t baseline err: 141.4637\n",
+ "Epoch 74/1000 \t Train Err: 55.2633 \t Test Err: 55.0628 \t baseline err: 141.4637\n",
+ "Epoch 75/1000 \t Train Err: 55.3569 \t Test Err: 54.9321 \t baseline err: 141.4637\n",
+ "Epoch 76/1000 \t Train Err: 55.4845 \t Test Err: 55.7232 \t baseline err: 141.4637\n",
+ "Epoch 77/1000 \t Train Err: 55.3814 \t Test Err: 54.6657 \t baseline err: 141.4637\n",
+ "Epoch 78/1000 \t Train Err: 55.4396 \t Test Err: 55.2952 \t baseline err: 141.4637\n",
+ "Epoch 79/1000 \t Train Err: 55.4018 \t Test Err: 55.4081 \t baseline err: 141.4637\n",
+ "Epoch 80/1000 \t Train Err: 55.5015 \t Test Err: 56.3544 \t baseline err: 141.4637\n",
+ "Epoch 81/1000 \t Train Err: 55.5352 \t Test Err: 55.8122 \t baseline err: 141.4637\n",
+ "Epoch 82/1000 \t Train Err: 55.4454 \t Test Err: 54.7959 \t baseline err: 141.4637\n",
+ "Epoch 83/1000 \t Train Err: 55.4375 \t Test Err: 55.1435 \t baseline err: 141.4637\n",
+ "Epoch 84/1000 \t Train Err: 55.4614 \t Test Err: 54.7396 \t baseline err: 141.4637\n",
+ "Epoch 85/1000 \t Train Err: 55.4046 \t Test Err: 55.3768 \t baseline err: 141.4637\n",
+ "Epoch 86/1000 \t Train Err: 55.3655 \t Test Err: 54.7487 \t baseline err: 141.4637\n",
+ "Epoch 87/1000 \t Train Err: 55.4036 \t Test Err: 55.0165 \t baseline err: 141.4637\n",
+ "Epoch 88/1000 \t Train Err: 55.4548 \t Test Err: 55.5787 \t baseline err: 141.4637\n",
+ "Epoch 89/1000 \t Train Err: 55.3973 \t Test Err: 54.7695 \t baseline err: 141.4637\n",
+ "Epoch 90/1000 \t Train Err: 55.4891 \t Test Err: 56.6628 \t baseline err: 141.4637\n",
+ "Epoch 91/1000 \t Train Err: 55.5870 \t Test Err: 56.8348 \t baseline err: 141.4637\n",
+ "Epoch 92/1000 \t Train Err: 55.4630 \t Test Err: 55.4178 \t baseline err: 141.4637\n",
+ "Epoch 93/1000 \t Train Err: 55.5218 \t Test Err: 55.8851 \t baseline err: 141.4637\n",
+ "Epoch 94/1000 \t Train Err: 55.4550 \t Test Err: 55.9211 \t baseline err: 141.4637\n",
+ "Epoch 95/1000 \t Train Err: 55.4727 \t Test Err: 56.5819 \t baseline err: 141.4637\n",
+ "Epoch 96/1000 \t Train Err: 55.4301 \t Test Err: 57.2222 \t baseline err: 141.4637\n",
+ "Epoch 97/1000 \t Train Err: 55.4108 \t Test Err: 55.3496 \t baseline err: 141.4637\n",
+ "Epoch 98/1000 \t Train Err: 55.4733 \t Test Err: 55.8675 \t baseline err: 141.4637\n",
+ "Epoch 99/1000 \t Train Err: 55.3536 \t Test Err: 56.2623 \t baseline err: 141.4637\n",
+ "Epoch 100/1000 \t Train Err: 55.2286 \t Test Err: 54.2883 \t baseline err: 141.4637\n",
+ "Epoch 101/1000 \t Train Err: 54.6294 \t Test Err: 54.3795 \t baseline err: 141.4637\n",
+ "Epoch 102/1000 \t Train Err: 54.0334 \t Test Err: 52.9438 \t baseline err: 141.4637\n",
+ "Epoch 103/1000 \t Train Err: 55.8557 \t Test Err: 55.9887 \t baseline err: 141.4637\n",
+ "Epoch 104/1000 \t Train Err: 55.3523 \t Test Err: 55.6809 \t baseline err: 141.4637\n",
+ "Epoch 105/1000 \t Train Err: 54.8650 \t Test Err: 54.1854 \t baseline err: 141.4637\n",
+ "Epoch 106/1000 \t Train Err: 54.8108 \t Test Err: 54.9449 \t baseline err: 141.4637\n",
+ "Epoch 107/1000 \t Train Err: 54.4932 \t Test Err: 53.3353 \t baseline err: 141.4637\n",
+ "Epoch 108/1000 \t Train Err: 54.0328 \t Test Err: 54.7242 \t baseline err: 141.4637\n",
+ "Epoch 109/1000 \t Train Err: 52.3047 \t Test Err: 50.1951 \t baseline err: 141.4637\n",
+ "Epoch 110/1000 \t Train Err: 46.5255 \t Test Err: 36.4212 \t baseline err: 141.4637\n",
+ "Epoch 111/1000 \t Train Err: 35.6437 \t Test Err: 36.2409 \t baseline err: 141.4637\n",
+ "Epoch 112/1000 \t Train Err: 35.5794 \t Test Err: 36.0152 \t baseline err: 141.4637\n",
+ "Epoch 113/1000 \t Train Err: 49.8337 \t Test Err: 56.2286 \t baseline err: 141.4637\n",
+ "Epoch 114/1000 \t Train Err: 55.4618 \t Test Err: 55.5159 \t baseline err: 141.4637\n",
+ "Epoch 115/1000 \t Train Err: 48.2926 \t Test Err: 37.0193 \t baseline err: 141.4637\n",
+ "Epoch 116/1000 \t Train Err: 43.0000 \t Test Err: 42.3349 \t baseline err: 141.4637\n",
+ "Epoch 117/1000 \t Train Err: 36.4887 \t Test Err: 38.2387 \t baseline err: 141.4637\n",
+ "Epoch 118/1000 \t Train Err: 35.7809 \t Test Err: 37.3943 \t baseline err: 141.4637\n",
+ "Epoch 119/1000 \t Train Err: 35.7078 \t Test Err: 37.0414 \t baseline err: 141.4637\n",
+ "Epoch 120/1000 \t Train Err: 35.7773 \t Test Err: 37.2562 \t baseline err: 141.4637\n",
+ "Epoch 121/1000 \t Train Err: 36.1376 \t Test Err: 38.1538 \t baseline err: 141.4637\n",
+ "Epoch 122/1000 \t Train Err: 38.3734 \t Test Err: 38.6760 \t baseline err: 141.4637\n",
+ "Epoch 123/1000 \t Train Err: 36.6591 \t Test Err: 38.0746 \t baseline err: 141.4637\n",
+ "Epoch 124/1000 \t Train Err: 37.1041 \t Test Err: 38.8434 \t baseline err: 141.4637\n",
+ "Epoch 125/1000 \t Train Err: 37.0860 \t Test Err: 37.3192 \t baseline err: 141.4637\n",
+ "Epoch 126/1000 \t Train Err: 35.8674 \t Test Err: 36.7553 \t baseline err: 141.4637\n",
+ "Epoch 127/1000 \t Train Err: 35.8025 \t Test Err: 36.0833 \t baseline err: 141.4637\n",
+ "Epoch 128/1000 \t Train Err: 35.6595 \t Test Err: 36.1782 \t baseline err: 141.4637\n",
+ "Epoch 129/1000 \t Train Err: 35.6861 \t Test Err: 36.1815 \t baseline err: 141.4637\n",
+ "Epoch 130/1000 \t Train Err: 35.5056 \t Test Err: 36.4077 \t baseline err: 141.4637\n",
+ "Epoch 131/1000 \t Train Err: 35.5161 \t Test Err: 36.6100 \t baseline err: 141.4637\n",
+ "Epoch 132/1000 \t Train Err: 35.4981 \t Test Err: 36.1938 \t baseline err: 141.4637\n",
+ "Epoch 133/1000 \t Train Err: 35.4577 \t Test Err: 36.2723 \t baseline err: 141.4637\n",
+ "Epoch 134/1000 \t Train Err: 35.5685 \t Test Err: 36.0326 \t baseline err: 141.4637\n",
+ "Epoch 135/1000 \t Train Err: 35.4790 \t Test Err: 36.0421 \t baseline err: 141.4637\n",
+ "Epoch 136/1000 \t Train Err: 35.5135 \t Test Err: 35.9383 \t baseline err: 141.4637\n",
+ "Epoch 137/1000 \t Train Err: 35.4027 \t Test Err: 35.5105 \t baseline err: 141.4637\n",
+ "Epoch 138/1000 \t Train Err: 35.4036 \t Test Err: 35.1535 \t baseline err: 141.4637\n",
+ "Epoch 139/1000 \t Train Err: 35.5047 \t Test Err: 35.7687 \t baseline err: 141.4637\n",
+ "Epoch 140/1000 \t Train Err: 35.3858 \t Test Err: 35.5093 \t baseline err: 141.4637\n",
+ "Epoch 141/1000 \t Train Err: 35.3629 \t Test Err: 35.1772 \t baseline err: 141.4637\n",
+ "Epoch 142/1000 \t Train Err: 35.3714 \t Test Err: 35.0682 \t baseline err: 141.4637\n",
+ "Epoch 143/1000 \t Train Err: 35.3976 \t Test Err: 35.6668 \t baseline err: 141.4637\n",
+ "Epoch 144/1000 \t Train Err: 35.4523 \t Test Err: 35.2633 \t baseline err: 141.4637\n",
+ "Epoch 145/1000 \t Train Err: 35.3763 \t Test Err: 35.5053 \t baseline err: 141.4637\n",
+ "Epoch 146/1000 \t Train Err: 35.3906 \t Test Err: 35.1866 \t baseline err: 141.4637\n",
+ "Epoch 147/1000 \t Train Err: 35.4717 \t Test Err: 35.2663 \t baseline err: 141.4637\n",
+ "Epoch 148/1000 \t Train Err: 49.5998 \t Test Err: 54.9490 \t baseline err: 141.4637\n",
+ "Epoch 149/1000 \t Train Err: 56.0901 \t Test Err: 55.1923 \t baseline err: 141.4637\n",
+ "Epoch 150/1000 \t Train Err: 55.4467 \t Test Err: 54.8896 \t baseline err: 141.4637\n",
+ "Epoch 151/1000 \t Train Err: 55.4050 \t Test Err: 55.0999 \t baseline err: 141.4637\n",
+ "Epoch 152/1000 \t Train Err: 55.3775 \t Test Err: 55.0012 \t baseline err: 141.4637\n",
+ "Epoch 153/1000 \t Train Err: 55.3564 \t Test Err: 55.1625 \t baseline err: 141.4637\n",
+ "Epoch 154/1000 \t Train Err: 55.4071 \t Test Err: 55.5768 \t baseline err: 141.4637\n",
+ "Epoch 155/1000 \t Train Err: 55.1633 \t Test Err: 55.3753 \t baseline err: 141.4637\n",
+ "Epoch 156/1000 \t Train Err: 45.2929 \t Test Err: 37.6036 \t baseline err: 141.4637\n",
+ "Epoch 157/1000 \t Train Err: 36.1442 \t Test Err: 35.6718 \t baseline err: 141.4637\n",
+ "Epoch 158/1000 \t Train Err: 35.5764 \t Test Err: 35.4595 \t baseline err: 141.4637\n",
+ "Epoch 159/1000 \t Train Err: 35.3944 \t Test Err: 35.3251 \t baseline err: 141.4637\n"
]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAHWCAYAAACbsXOkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACL8ElEQVR4nOzde3yO9R/H8dd972hjc5ht5jSnHMKcj0UJK+V87kD4UbJSK0UHh04kpKKUIoqIIiEZhYqcZg7lTM5zKIyNbbb798fXxtqw2b3dO7yfj8f1uO/7ur/XdX2uu+/Pz8f3e32+FpvNZkNEREREREQyxeroAERERERERPICJVciIiIiIiJ2oORKRERERETEDpRciYiIiIiI2IGSKxERERERETtQciUiIiIiImIHSq5ERERERETsQMmViIiIiIiIHSi5EhERERERsQMlVyIiIpKmL774AovFwqZNmxwdiohIrqDkSkQkH/joo4+wWCw0bNjQ0aHIdZKSlxttf/zxh6NDFBGRDHB2dAAiIpL1Zs2aRWBgIBs2bGDfvn1UrFjR0SHJdV5//XXKlSuXar/+O4mI5C5KrkRE8riDBw+ydu1avvvuO5544glmzZrFiBEjHB1WmqKjo/H09HR0GNnugQceoF69eo4OQ0REMknTAkVE8rhZs2ZRpEgRHnzwQbp06cKsWbPSbHfu3Dmee+45AgMDcXNzo1SpUvTq1YszZ84kt7l8+TIjR47kjjvuwN3dnRIlStCpUyf2798PwKpVq7BYLKxatSrFuf/++28sFgtffPFF8r7HH3+cggULsn//ftq0aUOhQoV45JFHAPj111/p2rUrZcqUwc3NjdKlS/Pcc89x6dKlVHHv2rWLbt26Ubx4cQoUKEDlypV55ZVXAPjll1+wWCwsWLAg1XGzZ8/GYrGwbt26NH+PTZs2YbFYmDFjRqrvfvrpJywWC4sXLwbgwoULPPvss8m/na+vL61atSI8PPwG/1UyJun3GzduHO+99x5ly5alQIECNG/enB07dqRq//PPP3P33Xfj6elJ4cKFad++PTt37kzV7tixY/Tr14+AgADc3NwoV64cAwcOJC4uLkW72NhYQkNDKV68OJ6ennTs2JHTp0+naLNp0yaCg4Px8fGhQIEClCtXjr59+9rl/kVEcguNXImI5HGzZs2iU6dOuLq60rNnTz7++GM2btxI/fr1k9tcvHiRu+++m507d9K3b1/q1KnDmTNnWLRoEUePHsXHx4eEhAQeeughVq5cSY8ePRg8eDAXLlwgLCyMHTt2UKFChQzHduXKFYKDg7nrrrsYN24cHh4eAMybN4+YmBgGDhxIsWLF2LBhAx9++CFHjx5l3rx5ycdv27aNu+++GxcXFwYMGEBgYCD79+/nhx9+4K233uKee+6hdOnSzJo1i44dO6b6XSpUqEDjxo3TjK1evXqUL1+eb775ht69e6f4bu7cuRQpUoTg4GAAnnzySebPn09ISAjVqlXjn3/+4bfffmPnzp3UqVPnlr/D+fPnUySxABaLhWLFiqXYN3PmTC5cuMCgQYO4fPky77//Pi1atGD79u34+fkBsGLFCh544AHKly/PyJEjuXTpEh9++CFNmzYlPDycwMBAAI4fP06DBg04d+4cAwYMoEqVKhw7doz58+cTExODq6tr8nWffvppihQpwogRI/j777+ZOHEiISEhzJ07F4BTp07RunVrihcvztChQylcuDB///0333333S3vXUQkT7GJiEietWnTJhtgCwsLs9lsNltiYqKtVKlStsGDB6doN3z4cBtg++6771KdIzEx0Waz2WzTpk2zAbYJEybcsM0vv/xiA2y//PJLiu8PHjxoA2zTp09P3te7d28bYBs6dGiq88XExKTaN3r0aJvFYrEdOnQoeV+zZs1shQoVSrHv+nhsNptt2LBhNjc3N9u5c+eS9506dcrm7OxsGzFiRKrrXG/YsGE2FxcX27///pu8LzY21la4cGFb3759k/d5e3vbBg0adNNzpWX69Ok2IM3Nzc0tuV3S71egQAHb0aNHk/evX7/eBtiee+655H21atWy+fr62v7555/kfVu3brVZrVZbr169kvf16tXLZrVabRs3bkwVV9LvlxRfy5YtU/ymzz33nM3JySn5N12wYIENSPNcIiL5iaYFiojkYbNmzcLPz497770Xro6GdO/enTlz5pCQkJDc7ttvvyUoKCjV6E7SMUltfHx8ePrpp2/Y5nYMHDgw1b4CBQokv4+OjubMmTM0adIEm83Gli1bADh9+jRr1qyhb9++lClT5obx9OrVi9jYWObPn5+8b+7cuVy5coVHH330prF1796d+Pj4FCMwy5cv59y5c3Tv3j15X+HChVm/fj3Hjx/P8P0DTJ48mbCwsBTbjz/+mKpdhw4dKFmyZPLnBg0a0LBhQ5YuXQrAiRMniIiI4PHHH6do0aLJ7WrWrEmrVq2S2yUmJrJw4ULatm2b5rNe//3vOWDAgBT77r77bhISEjh06FDy/QMsXryY+Pj42/oNRETyAiVXIiJ5VEJCAnPmzOHee+/l4MGD7Nu3j3379tGwYUNOnjzJypUrk9vu37+f6tWr3/R8+/fvp3Llyjg7229GubOzM6VKlUq1//Dhw8kJQsGCBSlevDjNmzeHq1PoAA4cOABwy7irVKlC/fr1UzxrNmvWLBo1anTLanxBQUFUqVIlefobVxMzHx8fWrRokbxv7Nix7Nixg9KlS9OgQQNGjhyZHF96NGjQgJYtW6bYkhLi61WqVCnVvjvuuIO///4bIDnZqVy5cqp2VatW5cyZM0RHR3P69GmioqJu+dsl+W/yWqRIEQDOnj0LQPPmzencuTOjRo3Cx8eH9u3bM336dGJjY9N1fhGRvELJlYhIHvXzzz9z4sQJ5syZQ6VKlZK3bt26wdUEw95uNIJ1/SjZ9dzc3LBaranatmrViiVLlvDSSy+xcOFCwsLCkothJCYmZjiuXr16sXr1ao4ePcr+/fv5448/bjlqlaR79+788ssvnDlzhtjYWBYtWkTnzp1TJJndunXjwIEDfPjhhwQEBPDuu+9y5513pjn6lBs5OTmlud9ms8HV/+7z589n3bp1hISEcOzYMfr27UvdunW5ePFiNkcrIuI4Sq5ERPKoWbNm4evry7x581JtPXv2ZMGCBcnV9ypUqJBm1bnrVahQgd27d9902lfSiMa5c+dS7E8aUUmP7du3s2fPHsaPH89LL71E+/btadmyJQEBASnalS9fHuCWcQP06NEDJycnvv76a2bNmoWLi0uKaX030717d65cucK3337Ljz/+SFRUFD169EjVrkSJEjz11FMsXLiQgwcPUqxYMd56661033d67N27N9W+PXv2JBepKFu2LAC7d+9O1W7Xrl34+Pjg6elJ8eLF8fLyStdvlxGNGjXirbfeYtOmTcyaNYs///yTOXPm2PUaIiI5mZIrEZE86NKlS3z33Xc89NBDdOnSJdUWEhLChQsXWLRoEQCdO3dm69ataZYsTxqd6Ny5M2fOnGHSpEk3bFO2bFmcnJxYs2ZNiu8/+uijdMeeNEqSdM6k9++//36KdsWLF6dZs2ZMmzaNw4cPpxlPEh8fHx544AG++uorZs2axf3334+Pj0+64qlatSo1atRg7ty5zJ07lxIlStCsWbPk7xMSEpKnKibx9fUlICDA7tPiFi5cyLFjx5I/b9iwgfXr1/PAAw/A1QSvVq1azJgxI0WCu2PHDpYvX06bNm0AsFqtdOjQgR9++IFNmzalus5/f79bOXv2bKpjatWqBVfLuIuI5BcqxS4ikgctWrSICxcu0K5duzS/b9SoEcWLF2fWrFl0796dIUOGMH/+fLp27Zo8nevff/9l0aJFTJkyhaCgIHr16sXMmTMJDQ1lw4YN3H333URHR7NixQqeeuop2rdvj7e3N127duXDDz/EYrFQoUIFFi9ezKlTp9Ide5UqVahQoQIvvPACx44dw8vLi2+//Tb5+Z7rffDBB9x1113UqVOHAQMGUK5cOf7++2+WLFlCREREira9evWiS5cuALzxxhsZ+j27d+/O8OHDcXd3p1+/fimmMl64cIFSpUrRpUsXgoKCKFiwICtWrGDjxo2MHz8+Xef/8ccf2bVrV6r9TZo0SR6hA6hYsSJ33XUXAwcOJDY2lokTJ1KsWDFefPHF5DbvvvsuDzzwAI0bN6Zfv37Jpdi9vb0ZOXJkcru3336b5cuX07x5cwYMGEDVqlU5ceIE8+bN47fffksuUpEeM2bM4KOPPqJjx45UqFCBCxcuMHXqVLy8vJITOhGRfMHR5QpFRMT+2rZta3N3d7dFR0ffsM3jjz9uc3FxsZ05c8Zms9ls//zzjy0kJMRWsmRJm6urq61UqVK23r17J39vu1oi/ZVXXrGVK1fO5uLiYvP397d16dLFtn///uQ2p0+ftnXu3Nnm4eFhK1KkiO2JJ56w7dixI81S7J6enmnG9tdff9latmxpK1iwoM3Hx8fWv39/29atW1Odw2az2Xbs2GHr2LGjrXDhwjZ3d3db5cqVba+99lqqc8bGxtqKFCli8/b2tl26dClDv+fevXuTS6T/9ttvqc47ZMgQW1BQkK1QoUI2T09PW1BQkO2jjz665XlvVor9+ntNKsX+7rvv2saPH28rXbq0zc3NzXb33Xfbtm7dmuq8K1assDVt2tRWoEABm5eXl61t27a2v/76K1W7Q4cO2Xr16mUrXry4zc3NzVa+fHnboEGDbLGxsSni+2+J9f+W3A8PD7f17NnTVqZMGZubm5vN19fX9tBDD9k2bdqUod9ZRCS3s9gyOvYvIiKSC125coWAgADatm3L559/7uhwMuTvv/+mXLlyvPvuu7zwwguODkdERG5Az1yJiEi+sHDhQk6fPk2vXr0cHYqIiORReuZKRETytPXr17Nt2zbeeOMNateunbxeloiIiL1p5EpERPK0jz/+mIEDB+Lr68vMmTMdHY6IiORheuZKRERERETEDjRyJSIiIiIiYgdKrkREREREROxABS3SkJiYyPHjxylUqBAWi8XR4YiIiIiIiIPYbDYuXLhAQEBAikXk06LkKg3Hjx+ndOnSjg5DRERERERyiCNHjlCqVKmbtlFylYZChQrB1R/Qy8vLobHEx8ezfPlyWrdujYuLi0NjkdxH/UcyQ/1HMkP9RzJD/UduV1b0naioKEqXLp2cI9yMkqs0JE0F9PLyyhHJlYeHB15eXvrDRTJM/UcyQ/1HMkP9RzJD/UduV1b2nfQ8LqSCFiIiIiIiInag5EpERERERMQOlFyJiIiIiIjYgZ65EhERERHJxRISEoiPj3d0GDlCfHw8zs7OXL58mYSEhHQd4+TkhLOzs12WYFJyJSIiIiKSS128eJGjR49is9kcHUqOYLPZ8Pf358iRIxlKljw8PChRogSurq6Zur6SKxERERGRXCghIYGjR4/i4eFB8eLF7TLyktslJiZy8eJFChYseMsFf7majMXFxXH69GkOHjxIpUqV0nXcjSi5EhERERHJheLj47HZbBQvXpwCBQo4OpwcITExkbi4ONzd3dOdJBUoUAAXFxcOHTqUfOztUkELEREREZFcTCNWmZeZ0aoU57HLWURERERERPI5JVciIiIiIiJ2oORKRERERETEDpRciYiIiIhItrBYLDfdRo4cmalzL1y40K7xZpSqBYqIiIiISLY4ceJE8vu5c+cyfPhwdu/enbyvYMGCDorMPjRylcMNHWrlySfv44cfVAVGRERERG7CZoPoaMds6VzE2N/fP3nz9vbGYrGk2DdnzhyqVq2Ku7s7VapU4aOPPko+Ni4ujpCQEEqUKIG7uztly5Zl9OjRAAQGBgLQuXNnihQpQvny5bPoR745jVzlcKdOWYiMLMi2bQl06uToaEREREQkx4qJAUeN/Fy8CJ6emTrFrFmzGD58OJMmTaJ27dps2bKF/v374+npSe/evfnggw9YtGgR33zzDWXKlOHIkSMcOXIEgI0bN+Lr68vnn39O06ZNKVy4sJ1uLGMcPnI1efJkAgMDcXd3p2HDhmzYsOGGbf/88086d+5MYGAgFouFiRMnptnu2LFjPProoxQrVowCBQpQo0YNNm3alIV3kXWqVzf/CrB9u0auRERERCTvGjFiBOPHj6dTp06UK1eOTp068dxzz/HJJ58AcPjwYSpVqsRdd91F2bJlueuuu+jZsycAxYsXB6Bw4cL4+fklf85uDh25mjt3LqGhoUyZMoWGDRsyceJEgoOD2b17N76+vqnax8TEUL58ebp27cpzzz2X5jnPnj1L06ZNuffee/nxxx8pXrw4e/fupUiRItlwR/ZXo4ZJrnbsUHIlIiIiIjfh4WFGkBx17UyIjo5m//799OvXj/79+yfvv3LlCt7e3gA8/vjjtGrVisqVK3P//ffz0EMP0bp160yHbk8OTa4mTJhA//796dOnDwBTpkxhyZIlTJs2jaFDh6ZqX79+ferXrw+Q5vcA77zzDqVLl2b69OnJ+8qVK5dl95DVkpKrffvMSG8m+62IiIiI5FUWS6an5jnKxatJ4dSpU2nYsGGK75ycnACoU6cOBw8e5Mcff2TFihV069aNli1bMn/+fIfEnBaHJVdxcXFs3ryZYcOGJe+zWq20bNmSdevW3fZ5Fy1aRHBwMF27dmX16tWULFmSp556KkUG/F+xsbHExsYmf46KigIgPj6e+Pj4247FHooWjcfbO5Hz593Ytu0Kdeum72FBEa724etfRTJC/UcyQ/1HMkP9J33i4+Ox2WwkJiaSmJjo6HAyLCnmxMREihcvTkBAAPv370+e6pdW24IFC9K1a1e6du1Kp06daNOmDWfOnKFo0aK4uLiQkJAAkPy7ZCQWm81GfHx8cjKXJCP90GHJ1ZkzZ0hISMDPzy/Ffj8/P3bt2nXb5z1w4AAff/wxoaGhvPzyy2zcuJFnnnkGV1dXevfuneYxo0ePZtSoUan2L1++HI8cMFRUtmwTtm0rzqxZ2zl58rCjw5FcKCwszNEhSC6m/iOZof4jmaH+c3POzs74+/tz8eJF4uLiHB1Ohl2+fBmbzZY8sPHSSy8xdOhQ3NzcuO+++4iNjSUiIoJz584xaNAgJk+ejJ+fHzVr1sRqtfL111/j5+eH1WolKiqKMmXKsGzZMmrWrMm5c+cyVNQiLi6OS5cusWbNGq5cuZLiu5iYmHSfJ89VC0xMTKRevXq8/fbbANSuXZsdO3YwZcqUGyZXw4YNIzQ0NPlzVFQUpUuXpnXr1nh5eWVb7GmJj4/n889PsG1bcazWmrRpU92h8UjuEh8fT1hYGK1atcLFxcXR4Uguo/4jmaH+I5mh/pM+ly9f5siRIxQsWBB3d3dHh5Nh7u7uWCyW5L9vh4SEULRoUcaPH8/w4cPx9PSkRo0aPPPMM3h5eeHj48PkyZPZu3cvTk5O1K9fnyVLliQnUePHj+eFF15g5syZlCxZkgMHDqQ7lsuXL1OgQAGaNWuW6rdMSv7Sw2HJlY+PD05OTpw8eTLF/pMnT+Lv73/b5y1RogTVqlVLsa9q1ap8++23NzzGzc0NNze3VPtdXFxyxP+gAwPNf9AdO5xwcXG6ZXuR/8opfVlyJ/UfyQz1H8kM9Z+bS0hIwGKxYLVasVodXgQ8w/r27Uvfvn1T7Hv00Ud59NFH02z/xBNP8MQTT9zwfO3bt6dt27ZERUXh5eWVod/EarVisVjS7HMZ6YMO+6/g6upK3bp1WblyZfK+xMREVq5cSePGjW/7vE2bNk2xyjPAnj17KFu2bKbidaSyZc8DsHVrutdnExERERGRbObQaYGhoaH07t2bevXq0aBBAyZOnEh0dHRy9cBevXpRsmTJ5JWX4+Li+Ouvv5LfHzt2jIiICAoWLEjFihUBeO6552jSpAlvv/023bp1Y8OGDXz66ad8+umnDrzTzCld+gJWq41//rEQGQklSjg6IhERERER+S+HJlfdu3fn9OnTDB8+nMjISGrVqsWyZcuSi1wcPnw4xXDe8ePHqV27dvLncePGMW7cOJo3b86qVavgarn2BQsWMGzYMF5//XXKlSvHxIkTeeSRRxxwh/bh5pZIpUqwezds367kSkREREQkJ3J4QYuQkBBCQkLS/C4pYUoSGBiILR3z4h566CEeeughu8WYE1SvbmP3bgvbtkEOWytNREREREQc+cyVZEzSYsLbtjk6EhERERERSYuSq1xCyZWIiIiISM6m5CqXSEqu/voLtFi5iIiIiEjOo+QqlyhbFgoVMonVnj2OjkZERERERP5LyVUuYbFAjRrmvaYGioiIiIjkPEqucpGaNc2rkisRERERkWsCAwOZOHGio8NQcpWbKLkSERERkdzMYrHcdBs5cuRtnXfjxo0MGDDA7vFmlMPXuZL0S0qutm93dCQiIiIiIhl34sSJ5Pdz585l+PDh7N69O3lfwYIFk9/bbDYSEhJwdr51ylK8eHEAEhMT7R5zRmjkKhepXt28HjkCZ886OhoRERERyUlsNoiOdsxms6UvRn9//+TN29sbi8WS/HnXrl0UKlSIH3/8kbp16+Lm5sZvv/3G/v37ad++PX5+fhQsWJD69euzYsWKFOf977RAJycnPvvsMzp27IiHhweVKlVi0aJF9v7JU1FylYt4e5uqgWj0SkRERET+IyYGChZ0zBYTY7/7GDp0KGPGjGHnzp3UrFmTixcv0qZNG1auXMmWLVu4//77adu2LYcPH77peUaNGkW3bt3Ytm0bbdq04ZFHHuHff/+1X6BpUHKVy+i5KxERERHJy15//XVatWpFhQoVKFq0KEFBQTzxxBNUr16dSpUq8cYbb1ChQoVbjkQ9/vjj9OzZk4oVK/L2229z8eJFNmzYkKWx65mrXKZmTfjhB41ciYiIiEhKHh5w8aLjrm0v9erVS/H54sWLjBw5kiVLlnDixAmuXLnCpUuXbjlyVTNpVALw9PTEy8uLU6dO2S/QNCi5ymW01pWIiIiIpMViAU9PR0eReZ7/uYkXXniBsLAwxo0bR8WKFSlQoABdunQhLi7upudxcXFJ8dlisWR5wQslV7nM9RUDExPBqomdIiIiIpKH/f777zz++ON07NgRro5k/f33344OK036q3kuU6kSuLmZqiwHDzo6GhERERGRrFWpUiW+++47IiIi2Lp1Kw8//LDDS67fiJKrXMbZGe6807zX1EARERERyesmTJhAkSJFaNKkCW3btiU4OJg6deo4Oqw0aVpgLlSzJoSHm6mBV0dHRURERERylccff5zHH388+fM999yDLY0FswIDA/n5559T7Bs0aFCKz0nTBJNGtBISErD+5/mZc+fO2TX+tGjkKhdSUQsRERERkZxHyVUupLWuRERERERyHiVXuVBScrVvnylsISIiIiIijqfkKhfy9QU/P7DZ4K+/HB2NiIiIiIig5Cr30nNXIiIiIgKkWQRCMsZev6GSq1xKz12JiIiI5G9OTk4AxMXFOTqUXC8mJgYAFxeXTJ1HpdhzKSVXIiIiIvmbs7MzHh4enD59GhcXl1Slx/OjxMRE4uLiuHz5crp+D5vNRkxMDKdOnaJw4cLJCevtUnKVS12fXNlsYLE4OiIRERERyU4Wi4USJUpw8OBBDh065OhwcgSbzcalS5coUKAAlgz8Bblw4cL4+/tn+vpKrnKpqlXByQn+/RdOnICAAEdHJCIiIiLZzdXVlUqVKmlq4FXx8fGsWbOGZs2apXuKn4uLS6ZHrJIoucql3N3hjjtg504zeqXkSkRERCR/slqtuLu7OzqMHMHJyYkrV67g7u6e6eenbocmZuZieu5KRERERCTnUHKViym5EhERERHJOZRc5WJJydX27Y6ORERERERElFzlYkkLCe/cCXqGUURERETEsZRc5WJlyoCXF8THw+7djo5GRERERCR/U3KVi1kseu5KRERERCSnUHKVy+m5KxERERGRnCFHJFeTJ08mMDAQd3d3GjZsyIYNG27Y9s8//6Rz584EBgZisViYOHHiTc89ZswYLBYLzz77bBZE7ngauRIRERERyRkcnlzNnTuX0NBQRowYQXh4OEFBQQQHB3Pq1Kk028fExFC+fHnGjBmDv7//Tc+9ceNGPvnkE2omZSB5UFJRCyVXIiIiIiKO5fDkasKECfTv358+ffpQrVo1pkyZgoeHB9OmTUuzff369Xn33Xfp0aMHbm5uNzzvxYsXeeSRR5g6dSpFihTJwjtwrOrVzeuxY/DPP46ORkREREQk/3J25MXj4uLYvHkzw4YNS95ntVpp2bIl69aty9S5Bw0axIMPPkjLli158803b9o2NjaW2NjY5M9RUVEAxMfHEx8fn6k4Mivp+jeKo0ABKFfOmYMHLWzZcoXmzW3ZHKHkZLfqPyI3o/4jmaH+I5mh/iO3Kyv6TkbO5dDk6syZMyQkJODn55div5+fH7t27brt886ZM4fw8HA2btyYrvajR49m1KhRqfYvX74cDw+P247DnsLCwm74XfHiDTh4sARz5/5FdPTBbI1Lcoeb9R+RW1H/kcxQ/5HMUP+R22XPvhMTE5Putg5NrrLCkSNHGDx4MGFhYbi7u6frmGHDhhEaGpr8OSoqitKlS9O6dWu8vLyyMNpbi4+PJywsjFatWuHi4pJmm/XrrWzYAImJ1WnTpmq2xyg5V3r6j8iNqP9IZqj/SGao/8jtyoq+kzSrLT0cmlz5+Pjg5OTEyZMnU+w/efLkLYtV3MjmzZs5deoUderUSd6XkJDAmjVrmDRpErGxsTg5OaU4xs3NLc3nt1xcXHLM/6BvFkvt2uZ1xw4rLi4Of4xOcqCc1Jcl91H/kcxQ/5HMUP+R22XPvpOR8zj0b+Kurq7UrVuXlStXJu9LTExk5cqVNG7c+LbOed9997F9+3YiIiKSt3r16vHII48QERGRKrHKC5KKIe7YAYmJjo5GRERERCR/cvi0wNDQUHr37k29evVo0KABEydOJDo6mj59+gDQq1cvSpYsyejRo+FqEYy//vor+f2xY8eIiIigYMGCVKxYkUKFClE9qYTeVZ6enhQrVizV/ryiYkVwd4eYGDhwwHwWEREREZHs5fDkqnv37pw+fZrhw4cTGRlJrVq1WLZsWXKRi8OHD2O1XhtgO378OLWT5sEB48aNY9y4cTRv3pxVq1Y55B4czcnJlGTftMmsd6XkSkREREQk+zk8uQIICQkhJCQkze/+mzAFBgZis2Ws3Hh+SLpq1LiWXHXq5OhoRERERETyH1U/yCOSnrvats3RkYiIiIiI5E9KrvIIJVciIiIiIo6l5CqPqFHDvB44ABcvOjoaEREREZH8R8lVHlG8OPj7g80Gf/7p6GhERERERPIfJVd5iKYGioiIiIg4jpKrPETJlYiIiIiI4yi5ykOSkqvt2x0diYiIiIhI/qPkKg+5fuQqg0uBiYiIiIhIJim5ykOqVAEnJzh7Fo4dc3Q0IiIiIiL5i5KrPMTNzSRY6LkrEREREZFsp+Qqj9FzVyIiIiIijqHkKo9RxUAREREREcdQcpXHKLkSEREREXEMJVd5TI0a5nXXLoiNdXQ0IiIiIiL5h5KrPKZUKShcGK5cMQmWiIiIiIhkDyVXeYzFoqIWIiIiIiKOoOQqD9JzVyIiIiIi2U/JVR6U9NyVkisRERERkeyj5CoP0siViIiIiEj2U3KVB1Wvbl5PnIAzZxwdjYiIiIhI/qDkKg8qWBAqVDDvVdRCRERERCR7KLnKozQ1UEREREQkeym5yqNU1EJEREREJHspucqjatUyr199BW++CfHxjo5IRERERCRvU3KVR7VtC+3bQ1wcvPYa1KsHmzc7OioRERERkbxLyVUe5ewMCxbArFlQrJiZHtiwIQwdCpcuOTo6EREREZG8R8lVHmaxwMMPw86d0KMHJCTAO+9AUBCsWePo6ERERERE8hYlV/lA8eLw9dfw/fcQEAB790Lz5jBoEERFOTo6EREREZG8QclVPtKuHfz5J/Tvbz5/9JFZcPjHHx0dmYiIiIhI7qfkKp8pXBg+/RRWroTy5eHIEWjTBnr1gn/+cXR0IiIiIiK5l5KrfKpFC1Pk4rnnzLNZX34JVavCN9+Azebo6EREREREch8lV/mYpydMmABr10K1anD6NHTvDp06wfHjjo5ORERERCR3UXIlNGoE4eEwfLgp4b5woRnFGj0aYmIcHZ2IiIiISO6g5EoAcHODUaPMQsP165sqgi+/DHfcAdOmmTLuIiIiIiJyY0quJIWaNeGPP8wzWGXLwrFj0K+fWRtr8eIbPI8VGQnz5sHTT0P79rBkiQMiFxERERFxrByRXE2ePJnAwEDc3d1p2LAhGzZsuGHbP//8k86dOxMYGIjFYmHixImp2owePZr69etTqFAhfH196dChA7t3787iu8galp9+ouxPP2FZuhS2bjUl/bK44oTVCo8+Crt2wbhxUKSIKeHeti3ccw9sWBQJX30FAwZA5cpQogR06waTJsGiRfDQQzBiBCQmZmmcIiIiIiI5icOTq7lz5xIaGsqIESMIDw8nKCiI4OBgTp06lWb7mJgYypcvz5gxY/D390+zzerVqxk0aBB//PEHYWFhxMfH07p1a6Kjo7P4buzPOnMmtT7+GOcOHaBWLfDxMZUo7rjDlPzr1cvM3/voI5PYbNliKlPYIQFzd4fnQ23s/2kfQ4K34WaNY80aaNjen26PubJv6s+wZ48pNxgUZEau+vUzB7/+ullY69y5zP8IIiIiIiK5gLOjA5gwYQL9+/enT58+AEyZMoUlS5Ywbdo0hg4dmqp9/fr1qV+/PkCa3wMsW7YsxecvvvgCX19fNm/eTLNmzbLkPrKKrX59Thw6hH9cHJZjx0zidOkS7N1rthtxc4OSJcHbGzw8oECBa6/peR8ZCWvWwJo1FDl5krFACKUZzuvMpBfz6MYCa2eebHOY18YXwfeOwteu3awZPPGEmR5Yvz4sWGBWKxYRERERycMcmlzFxcWxefNmhg0blrzParXSsmVL1q1bZ7frnD9/HoCiRYum+X1sbCyxsbHJn6OiogCIj48nPj7ebnHcjvhBg9hwxx20atUKFxcXuHwZjh83idbRo9dejx6FY8fM55MnscTGwoEDdonB5uaGrUEDSt51F5/d7cfThS7yypsF+eknJyYtLscXq2y88EICgwcn4ukJ9OwJVarg3LUrln37sDVqRMKnn2Lr2tUu8Uj6JfVfR/djyZ3UfyQz1H8kM9R/5HZlRd/JyLksNpvjlow9fvw4JUuWZO3atTRu3Dh5/4svvsjq1atZv379TY8PDAzk2Wef5dlnn71hm8TERNq1a8e5c+f47bff0mwzcuRIRo0alWr/7Nmz8fDwyNA95QSW+Hjcz56lwD//4HzpEk6xsTjFxSW/WpPe/2d/0ntrXBwJ7u78W7UqZ6pV41ylSiS6uqa6zrZtPsyYcSf795tRqyJFLtOjxy5atDiCi0sirlFR1Bs3juLbtgGwt0MHdj72GDYnp2z/TUREREREbkdMTAwPP/ww58+fx8vL66ZtHT4tMKsNGjSIHTt23DCxAhg2bBihoaHJn6OioihdujStW7e+5Q+Y1eLj4wkLC7s2cpWNigIVb/J9mzbw4ovwzTdXGDHCiYMH3fn441rMnRtE166JPPqoDe91XUh47VWcJkyg0sKFVIiKIuGrr8yzY5LlHNl/JPdT/5HMUP+RzFD/kduVFX0naVZbejg0ufLx8cHJyYmTJ0+m2H/y5MkbFqvIiJCQEBYvXsyaNWsoVarUDdu5ubnh5uaWar+Li0uO+R90Torlvx57zBQLnDIFxo6F48ctfPKJE598ApUqOfPYY+N59MMWlBvaHevPP2Nt1Ai++w7q1nV06PlGTu4/kvOp/0hmqP9IZqj/yO2yZ9/JyHkcWi3Q1dWVunXrsnLlyuR9iYmJrFy5MsU0wYyy2WyEhISwYMECfv75Z8qVK2eniOVG3Nxg8GA4fBiWLzel3D08TM2N4cOh/NMP0rzKST4rPozzh89B06YwY4ajwxYRERERsRuHl2IPDQ1l6tSpzJgxg507dzJw4ECio6OTqwf26tUrRcGLuLg4IiIiiIiIIC4ujmPHjhEREcG+ffuS2wwaNIivvvqK2bNnU6hQISIjI4mMjOTSpUsOucf8xMkJWrUyixCfPGnyp/vuM9Xa12z2pP/pt/G3nqJH7Bcsefwb4gc+A3Fxjg5bRERERCTTHJ5cde/enXHjxjF8+HBq1apFREQEy5Ytw8/PD4DDhw9z4sSJ5PbHjx+ndu3a1K5dmxMnTjBu3Dhq167N//73v+Q2H3/8MefPn+eee+6hRIkSydvcuXMdco/5VcGCZhmuFSvMiNaYMVC1KlxOdGMuPXiIJZSa8grPBS5gy/LTWb02soiIiIhIlsoRBS1CQkIICQlJ87tVq1al+BwYGMitChw6sACi3ECpUvDSS6YARng4zJwJX8+I5dR5Pyae6M7EYChVNJo61eOo09CV2k09qFPXQsmSZtRLRERERCSnyxHJleQfFoupY1G3Lowb58ZP044x88XtLIq6h6P/enJ0jSeL1gDvmvY+Luep43eUOhWiqB2UQJ27PCnf2A9rgD9YHT7wmvXi4uCPP8yCzlFR5ge0Ws1rOt5bExMpExkJDRpAiRKOvhsRERGRPE3JlTiMiws89ERJHnrYiwtDR7Jl1Xm2HPUhPKoiW6jNX1TjTLw3y496s/wosBr4AAoRRW3Lb9T2OkCdkicJqpFI+f+1oNB9DXL/MFdCAkREwM8/w8qV8OuvEBNz26dzAmoDtk8+gdat4eGHoX17M2dTREREROxKyZU4XqFCFJo8hmZAM4DLl+HIES7tWcOOdRcID4ct+wqxJdKfrRfKcwEv1tiaseZ8MzgP/AXMBR+nfylXMo5ydYpQrrIb5ctDuXJmK1MG0lgH2fFsNti9+1oy9csvcPZsyja+vtCiBZQsadrbbJCYmK73iVeuEPXbbxTevx+WLjWbh4dJsB5+GIKDTZYrIiIiIpmm5EpyHnd3qFSJApUqUf9BqH/dV1euwK4dVwj/+Rxb1l0mfLszf/7tyT+xhTiTUJQzh2Hj4dSntFpNbnJ9wlWunNnn729mzBUunE0DX0ePmkRq5UqTVB07lvL7QoXgnntMmcX77oM777ztwBLi41m9dCltypfHZf58mDUL9u+Hr782W7Fi0LWrSbSaNs0fUy1zo927YeJE2LULqlWD2rXNdued5n8vIiIikiMouZJcxdkZqtdypnotH3pdtz/q8DkOTvmJg1//wcG/4SDlOEB5DrpW5qAtkEvxLhw5AkeOwOrVaZ/b1dUkWtdvJUqAv1cM/lF78D+xBf/9v+O/PQz300dMMM7Opv58Wu/T+i4qyiQ313NzM4lNixYmmapXz7S3pypVYNQoGDkSNm6E2bNhzhxTL3/KFLOVKQM9e5pEq2ZN+15fbs/vv8O778KiRSSX07y+yI+zsynBWbs21Kp17bVwYYeFLCIikp8puZI8watMYYLe7k7QW91g0yaYOhVmvwzR0diAU84lOdDscQ427MFBj2oc/NvKwYNw4gRERpqZeHFxpmT84VQjXx5AraubWX/Ni/P4xJ8xG2Yrxj/J71NupynKvziTYE5ntZoEKmlkqkkTKFAge34oi8UUt2jQAMaNM39RnzULvv3W3Pg775itenWTaN1/PwQFmcRQskdCgkmm3n0X1q27tr9dOzOdc9cu2LLFbP/8A9u3m23mzGttAwOvjW4lJV2lSjnkdkRERPITJVeSt1gsUL++2caPhzlzsEydit/Gjfj9/BaNf37LzA3s3x/e6A3R0bB+PbFrN3Ny7X5O7PiHyCvFiMQ/xXbCrRyRziWJjC1C7BVnovAmCm8OUCHdoRUuGE/RQvG4e7vhGueE60pw+82MmLm6mgGspPdpfbZYbvyI1Y0eu7pyxcqxY9XZts1KiRJQvLh5hMu8OlPovpZYWraEjz4yz2PNng2LF8OOHfDKK2bz8jIja82ama1evZs+wJY0wJLumYxxcSZh2L4dTp82iUD9+ubZsPzk0iWTII0fD3v3mn2urmaxuOefN6OP17PZzJTSpEQrIsK8/v33tW3Bgmvty5aF5s3NlNN77jEJWG4vACMiIpLDKLmSvKtQIZNE9e9v/uI5dSp89RUcOADDhpntKjegzNWNokWhYUNoUAIaBpq/6Pv4wNW/z547Z3KAM2fMwMGZMzff/v3XXOPcRRfOXXSBEzeIN0s4ARX44Ye0v3V1TUq2CuDr25nixTvj2/8yxSN3UGz3WuL2HeJilDPRP3oS/aML0WzjotMhoouUJtqrBNEFinHR4kX0JSvR0SRvBQqY59lKlTKvJUtCyQAbpQr8Q8noPZQ8tQW/A+tw+nMb7NxpHqZLEbaTGTFr3PjaVq6c/ZKBc+dgzx6zXbpk5n8mbb6+9p+WeTP//GOS2w8/NB0LzLS+p56Cp58281PTYrGYH7hUKWjb9tr+s2dNf09KtrZsMb/xoUMmeUsa4SpTxiRZSQmXPX9fERGRfErJleQPtWrB5MkwdizMm2cSrbVrzfBQ7dpXk6kG5rV8+Rv+JdNigSJFzHbHHem79JUr5u+7Z86Y19hYM1iTtKX3s82W4WWuSExMYOfOA3h5VeDMGSunT8OpU+bv8NHR5rxHj5rtGneg3tUtDQnAmavbDURHX8tdrvv1AJ+rWxOceIISnKAkxyjlfJKSvvGU8I6h8PG/8D5/CO/w83iHb8F78iq8OY+3jysFG9fA2qSRSbbq1QNPzxsHcfky7Nt3LZDrt6QkJi0Wi0mwrk+4/rPZ/Etwxccf54Lut5+PHDwIEybAtGnXyu2XKQPPPQf9+pl/HLgdRYrAvfeaLUl0tOnvq1aZbcMGMw30+mSrdOlro1pJydbtSEgwCWtsrKlE6epqXjW1VERE8gElV5K/eHrC44+b7fRp8PbO8hrtzs5mGl7x4ll6mTTFxyeydOlftGkTiItLykqAMTGkSLb++/rPPyb3LFjQ/GyenuDpYaNgzCk8j+3G8+CfeO4Jp+A/h/Ak+rothmg8OEopjlGSY5S87n0pjjqXJTKhOAk2Z45SmqOUZv0V4PjV7UbOgOWHRLx+iDLJFvvx9kzA28cZ7xIeuCTG4XThLE5R53A6/y9OF8/jxBWsJOKEM05UxomKOBGMEwk4FfLEyacICS7uxETFE3MhgZhoiLEVIOakh9kiPIjBg0sUIAaPFJsNK05cwcNyCU/rJTydLuPpEoeH6xU83a7g6Z6AZwEbHh7gWdCCZyErnl5OeBSw4RnxO57hv+Jpu4AnTfCsVBLPPt3w7NAKz8IueNrAM+H28pHERJM0x8dfe71yxROXmq1wq98Kt1fB7Uo01vXrUiZbR47Al1+aDaBUKZyaNaNKfDzWn382yWp0tOk4/329/v3ly2kHZrVeS7aSEq7/vndxMcOe/fvDY49l/OZFREQcTMmV5F+OyHZyEA8P8xhO2bIZOcoC+F3dmpnhtEOHYM2aa9tekyFV8r8INV2hZgmo4Q01y5vKdm5uXLliChUePWoeG0raIiPh/Pm0Nhvx8RZsWDlPYc5ztRpe9NXt0G38ABeubpmQgDMXbIW4kFDIjOjFXY3nlu4EBlz7uBd4+ep2HTc3898pKbl1dTXJ0vWJU9Jr0vvExPRc3xNn55a4ubXEzQ3ciiXiRixu8Rdxu3Qet0tncT96CbfZsbhzmQJcwoOYFK83en/9qxdReBFFIS7gmhhvRrNiY28d3q+/wvHj8NJL6bkZERGRHEPJlYjcPovFFEYIDDSFF8AMfVksN01enZ2vPYuVHjabhcuX/5Nw7TvN+c17Ob/9CFEHzhDvXoiEYr4kFC1OQlEfEgr7kODmQUKihYQEUmyJidfeW60mcfHwSLkVKJB6X/JWwIbr5Sgun7lI9Klook/HEP3PZWLOxhJ9No7oc/FERyUQcyGB6Iu2awM9l52IjnUmupA/0SUrEW0plOJZtaQtqShIUi7y33WlM/qfyNnZJF/Xu3LFbNHRAFagwNUta/7Rwc3NhlfBRLw8EyjkkYCXZwJeBa7gVSAerwJxFHKLw8stDu+jf1Jn1XgaDn0F56goePNNPQsmIiK5hpIrEbEvX1+7n9JiMclOgQLX1XdoUBwedtToowXwhnLedj+zzXZtBt5/t/j4lDPo0vOaNLXQZjPHJyVsaW2XL6f8HB19hY0bt1OxYk3i4py4dMkkide/3mhfdDRcuHDtcbLYWAunY504/c+t5jpWBjpRmLO0fns5bdZ/xf1fPoJfCS1wLSIiOZ+SKxGRHOT6RPJqkUq7nTfpEaf01sqIj7dRuPBh2rSpjovL7RWkuHLFJFlRUddek7a0Pp8+bRb6Pnu2CN/QnW9WAgFQt46NB9pYaNPG1J5RfQwREcmJlFyJiEiWcXa+VmEzvRISTI2Npe9s58fvY9lMPTaHW9gcbmYJFi0KwcHwwAPmNQsGS0VERG6L5lmIiEiO4uRkqu2/sbAGmxYc5YRLGb6gN938V1O4sI1//4WvvzaP+fn7m5GsESPMOtQiIiKOpORKRERyrg4d8F/yOb095jM38h5O33kvv/54kZdfNkvU2WywcSO8/rpZzu7tt9NbMVFERMT+lFyJiEjO1qoVLF8O3t44/76au15pzlvPnSE83FRsnzYN2rQxSdUrr0DbtmadNhERkeym5EpERHK+pk3hl19MlY/wcGjeHI4fp0QJ6NMHliyBzz8Hd3dYuhTq1IH16x0dtIiI5DdKrkREJHeoXdssMFyyJPz1F9x9Nxw8mPx1377wxx9QsSIcPmy+njTp2rphIiIiWU3JlYiI5B5VqsBvv0H58nDgANx1F+zcmfx1UBBs2gSdO5t1vZ5+Gnr0MGXeRUREspqSKxERyV0CA80I1p13moeumjUzUwWv8vaGefNg4kRTCv6bb6B+fdixw6FRi4hIPqDkSkREcp+AALPacL16cOYM3HuvGdG6ymKBwYNhzRooVQp27zYl22fOdGjUIiKSxym5EhGR3KlYMVi50oxcRUWZqoJffJGiSePGsGULtG4Nly5B794wYABcvuywqEVEJA9TciUiIrmXlxf8+KOpv375sikd2L9/iuzJx8dUEBw1yoxoTZ1qkq79+x0auYiI5EFKrkREJHfz8ICFC+GNN0z29Nln0KSJKXhxlZMTDB8OP/0ExYtDRATUrWsOExERsRclVyIikvtZrfDqqyZ78vExcwHr1oUffkjRrFUr81XTpnD+PHTsCC+8ALGxDotcRETyECVXIiKSd7RqZSoHNmoE585Bu3YwbBhcuZLcpGRJsx7x88+bz+PHwx13mOmC8fGOC11ERHI/JVciIpK3lC5tKgk+84z5PGaMqWhx8mRyExcXGDcOFiwwhQcPHzaFLqpUgRkzUuRiIiIi6abkSkRE8h5XV3j/fZgzBwoWNENVtWunKNcO0KED7NsH770Hvr7mMa3HHzdLaM2eDQkJDrsDERHJhZRciYhI3tW9O2zcCNWqwYkTcM89Zh6gzZbcpEABePZZk1iNHWsqvO/ZA488AjVrwvz5kJjo0LsQEZFcQsmViIjkbVWqwPr18PDDZijqhRegSxdT0eI6np4wZAgcPAhvvgmFC8Nff0HXrlCnDnz/fYqcTEREJBUlVyIikvcVLAhffQWTJ5sHrr77DurVg23bUjUtVAheeQX+/htGjDBLaW3daqYQNmhgltVSkiUiImlRciUiIvmDxQJPPQW//mqKXuzbZ6oKfvFFmg9XeXvDyJFmJGvYMDOytWkTtGljSrmvXKkkS0REUsoRydXkyZMJDAzE3d2dhg0bsmHDhhu2/fPPP+ncuTOBgYFYLBYmTpyY6XOKiEg+0rChKdceHAyXLkGfPiZzqlnTzAF87TWYNQs2b4YLFyhaFN5+2yRZL7xgntFatw5atjRrFX/1ldbJEhERw+HJ1dy5cwkNDWXEiBGEh4cTFBREcHAwp06dSrN9TEwM5cuXZ8yYMfj7+9vlnCIiks/4+MCSJTBqFHh4mOxo+3ZTveLNN+HRR820QS8vKFUKWrak+KgQ3i3zIQemr+aZPhdwc7Pxxx/w2GOmybBhZiqhiIjkXw5PriZMmED//v3p06cP1apVY8qUKXh4eDBt2rQ029evX593332XHj164ObmZpdziohIPuTkBMOHQ1QU7N9vkq3x482CV82agZ+faXfsmJkDOHkyPPMM/j3u4f3pXvxtrcCbNeZQOuAKZ86Y5bTKl4e2bc1zWaowKCKS/zg78uJxcXFs3ryZYcOGJe+zWq20bNmSdevWZds5Y2Njib1uTkdUVBQA8fHxxMfH31Yc9pJ0fUfHIbmT+o9kRr7qP6VLm61Vq5T7z57FsmcP7N6NJWnbswf27cP/0kFe2d6TFz2eYPFj0/joWAdW/OzE4sWweDGUL29jwIBEevdOpFgxR92Y4+Sr/iN2p/4jtysr+k5GzuXQ5OrMmTMkJCTgl/Svg1f5+fmxa9eubDvn6NGjGTVqVKr9y5cvx8PD47bisLewsDBHhyC5mPqPZIb6z9VphD4+ppIFYLlyBe8DB6g+fTrFdu6k45dduK9MGRY/N4y5+1uycmUZDhxwZehQJ157De666xgPPHCQSpXOYbE4+mayl/qPZIb6j9wue/admJiYdLd1aHKVUwwbNozQ0NDkz1FRUZQuXZrWrVvj5eXl0Nji4+MJCwujVatWuLi4ODQWyX3UfyQz1H/S4ZlnuPLllzgNHYrX4cM8/N5Aejz2GBcixjD3Z18+/tiJiAgnfvmlDL/8UoY6dRJ58slEunWzkUP+7S7LqP9IZqj/yO3Kir6TNKstPRyaXPn4+ODk5MTJkydT7D958uQNi1VkxTnd3NzSfH7LxcUlx/wPOifFIrmP+o9khvrPLfzvf9CxI7z8Mnz6KdYvv8R78WIGjB5N/0392bDJwkcfwdy5EB5uZcAAKy+9BE88ASEhULKko28ga6n/SGao/8jtsmffych5HFrQwtXVlbp167Jy5crkfYmJiaxcuZLGjRvnmHOKiIjcVLFi8MknpkZ7rVpw9iw8+SSWJo1p6BLOjBlw9Ci88w4EBpqvx4wx7x991FR9FxGR3M/h1QJDQ0OZOnUqM2bMYOfOnQwcOJDo6Gj69OkDQK9evVIUp4iLiyMiIoKIiAji4uI4duwYERER7Nu3L93nFBERyRKNGsHGjfD++1CoEGzYAPXrw9NP4+N8jhdfNGsXL1xoChJeuWKW1KpXD5o3h++/T3M9YxERySUcnlx1796dcePGMXz4cGrVqkVERATLli1LLkhx+PBhTpw4kdz++PHj1K5dm9q1a3PixAnGjRtH7dq1+d///pfuc4qIiGQZZ2d45hnYvRt69jQ12SdNgipVYNYsnKw22reH1ath0yZ45BFzyJo10KEDVK5sml+86OgbERGRjMpwchUYGMjrr7/O4cOH7RZESEgIhw4dIjY2lvXr19OwYcPk71atWsUXX3yR4vo2my3VtmrVqnSfU0REJMuVKAGzZ8OKFXDHHXDypJkD2KIF7NwJQN268NVXZvHhoUOhSBGz5NbTT5vK8C+9ZKYTiohI7pDh5OrZZ5/lu+++o3z58rRq1Yo5c+akWCNKRERErnPffbBtG7z5Jri7w6pVcOedcO+95jmtM2coWRJGj4YjR8xaxRUrwrlzMHYslCsHDz9sRrlERCRnu63kKiIigg0bNlC1alWefvppSpQoQUhICOHh4VkTpYiISG7m5gavvAJ//QXt2oHNZpKsJ58Ef3944AGYMQPPK+d56ikzo3DRIrjnHvNc1tdfm0e37r7b5GjffQe7doHWVxURyVlu+5mrOnXq8MEHH3D8+HFGjBjBZ599Rv369alVqxbTpk3DZrPZN1IREZHcrlw5U7Xi77/NsFSdOqaCxbJl8Pjj4OsLHTtinTeXti2i+eUXCA+Hxx4DFxf47Td47TXo3BmqVgVPT6heHbp1g5Ej4ZtvYMcO0IQSERHHuO11ruLj41mwYAHTp08nLCyMRo0a0a9fP44ePcrLL7/MihUrmD17tn2jFRERyQvKloUhQ8y2Z49ZBOvrr82zWAsXms3DA9q2pXaPHsz89H7GjHHn669h+3YzAPbXXxAdDX/+abbrOTmZqYXVql3batUyCZnF4qibFhHJ+zKcXIWHhzN9+nS+/vprrFYrvXr14r333qNKlSrJbTp27Ej9+vXtHauIiEjec8cdZjjq1VfNsNOcOWY7cMAkXXPngpcXAR078nz37vBYXShenESbhSNHTD6WlGz99ZdJtKKizNTC3bthwYJrlype3JSAb97cbNWrg/Vmc1hsNjMvUYu4ioikS4aTq/r169OqVSs+/vhjOnTokOaKxeXKlaNHjx72ilFERCTvs1igRg2zvfmmqWAxZ45Jro4dgxkzzIZ5hstapgxlr273ly0LTctAzzLYSpfhhHNp/jrgniLh2rwZTp+Gb781G0CRwoncXfM8zcsfpbnPn9QiAqcTR02JwqQtIQHatoUBA6B161tkYyIi+VuGk6sDBw5QtmzZm7bx9PRk+vTpmYlLREQk/7JYTAWL+vXh3Xfh999NorV4sSkpGBsLe/ea7b+HAgFAgK8vLcuWhTJloH4Z4uo4sXG7O6v3lWT16ar8frkuZ88VZNGaIixaUwSogRcPcBe/0ZzVNOcSdTiEC1fM8NeCBWY6Y//+0KcPBAQ45KcREcnJMpxcnTp1isjIyFTrRq1fvx4nJyfq1atnz/hERETyN6vVlAm8+25Tpz0uzoxkHT5stkOHrr1P+hwTA6dOmW3jRgBcgaZXt5eBeJwJt9RjdaGHWG29h98u1iLqijdLeZClPAiAp0cijWtGExS7kRq751H90AaqvvoWHiNGpBzNcnJy8I8kIpIzZDi5GjRoEC+++GKq5OrYsWO88847rF+/3p7xiYiIyPVcXU3VwXLl0v7eZoN//02dfIFZmbhUKShVCpdSpWjo50dDZ2dexMz+i4iA1avN9uuvcPaslRV/FGIFLYAWAFhIpELCfqov3EH1hZuoXmwx1XvW4I7n2+ISWDIbfwgRkZwnw8nVX3/9RZ06dVLtr127Nn/99Ze94hIREZHbYbFAsWJmq1073Yc5OUHdumYLDYXERFNfY90688zWjh2mUuGZM1b2UYl9VGIhHeEfYBK4TIqjcqFDVK/tQvWW/lSpZiE29raLEouI5EoZ/lPPzc2NkydPUr58+RT7T5w4gbOz/hAVERHJC6xWqFnTbNc7dcokWjt2wI6IK+z49Sw7DnpwIcGTHRfKsmMNsAbAirtba3791cozz5gy8CIieV2Gs6HWrVszbNgwvv/+e7y9vQE4d+4cL7/8Mq1atcqKGEVERCSH8PWFFi3MZv4aURybDY78vJcdk1ax46dj7LhUnvU0ZE9sZaZMgSlTzKNZTz8Nbdqo4KCI5F0ZTq7GjRtHs2bNKFu2LLWvTjeIiIjAz8+PL7/8MitiFBERkRzMYoEy91WizH2VaHP5Mnz3HYnDH2LN/pJ84DqE76+0YflyC8uXQ4UKEBJiCg5e/TdaEZE8I8P/dlSyZEm2bdvG2LFjqVatGnXr1uX9999n+/btlC5dOmuiFBERkdzB3R0efpiE1auoVf4I38U9xH6PmgzpcYTChWH/fnjuOShZ0iRZu3Y5OmAREfu5rYekPD09GTBggP2jERERkbzB15ff33yTB6ZMIXDNGsYuvIMRM79l1tk2fPCBKZIxebLZgoPhmWfg/vs1ZVBEcrfbrkDx119/cfjwYeLi4lLsb9eunT3iEhERkVzuiocHCT/8gPWxx2DRIjx7tmPA9On03/4YP/8MH34IixbBTz+ZrWJF81zW44+Dl5ejoxcRybgMJ1cHDhygY8eObN++HYvFgs1mA8BisQCQkJBg/yhFREQkdypQAL79Fvr1g5kzoVcvLP/+y32DB3PffXDgAHz0EXz2GezbB4MHw8svQ48e0L8/NGhgnukSEckNMjz4PnjwYMqVK8epU6fw8PDgzz//ZM2aNdSrV49Vq1ZlTZQiIiKSezk7w/Tp8Oyz5vOzz8KIEWCzUb48jBsHR4/Cxx+bku3R0fD559CoEQQFwQcfmHWRRURyugwnV+vWreP111/Hx8cHq9WK1WrlrrvuYvTo0TzzzDNZE6WIiIjkblYrTJgAb7xhPr/+upkDmJgIQMGC8OST5lmsNWvgscdMbYzt281oVkAAPPIIrFoFVyfNiIjkOBlOrhISEihUqBAAPj4+HD9+HICyZcuye/du+0coIiIieYPFAq++auYBWiymmsWjj0J8fIomd99tZhCeOAGTJpnRq9hYmD0b7r0X7rgD3nkHTp506N2IiKSS4eSqevXqbN26FYCGDRsyduxYfv/9d15//XXKly+fFTGKiIhIXjJwIMyaZaYLfv01dOgAMTGpmhUuDIMGwZYtsHEjPPEEFCpkns0aOhRKlYJOneDHH0GPfItITpDh5OrVV18l8eoQ/uuvv87Bgwe5++67Wbp0KR988EFWxCgiIiJ5Tc+eplRggQKwdKmpx37uXJpNLRaoVw+mTIHjx83zWI0bw5UrsGABtGkD5crByJFw9my234mISLIMJ1fBwcF06tQJgIoVK7Jr1y7OnDnDqVOnaNGiRVbEKCIiInnRAw9AWJgZovrtN7jnHoiMvOkhBQtC376wdq15HuvZZ6FoUThyBEaNMgUxvv022+5ARCSFDCVX8fHxODs7s2PHjhT7ixYtmlyKXURERCTdmjaF1avBzw+2boW77oKDB9N1aPXq8N57cOyYmV1YpYp5DqtLFzNd8Opj4SIi2SZDyZWLiwtlypTRWlYiIiJiPzVrwu+/m7l9+/ebOX8//pjuw93dzbpYERHw2mvmUa4FC6BaNbN+lqoLikh2yfC0wFdeeYWXX36Zf7XghIiIiNhLhQomwapZ0ww/tWkD//sfnD+f7lO4uZkK75s3Q/365tD+/aFlS5OziYhktQwnV5MmTWLNmjUEBARQuXJl6tSpk2ITERERuS0lSsAff0BoqKli8fnnUKOGeS4rA2rWhHXrYPx4Uy/j55/NacaNM0UwRESyinNGD+jQoUPWRCIiIiJSoIDJijp0gD59zJBT69amDvu775pa7Ong5GRytPbtYcAAk2ANGQJz55qcrWbNLL8TEcmHMpxcjRgxImsiEREREUly992mwMXQoWYl4U8+gZ9+gmnTzErC6VShAqxYYQ57/nnYtAnq1oWXXjLrGbu7Z+ldiEg+k+FpgSIiIiLZwtMTPvzQDDsFBsLff0OLFvDMMxAdne7TWCzQrx/s3GmqCF65Am+9BbVrm8e8RETsJcPJldVqxcnJ6YabiIiIiF3dey9s22amBoJJuGrVMmtjZUCJEmYNrPnzTeX3XbvMAFlICFy4kDWhi0j+kuFpgQsWLEjxOT4+ni1btjBjxgxGjRplz9hEREREjEKFYMoUM/TUrx/s2wfNmsFzz8Gbb5pntdKpc2czAPbCC2a64OTJsHw5LFsG5ctn6V2ISB6X4eSqffv2qfZ16dKFO++8k7lz59KvXz97xSYiIiKSUuvWsGOHqVYxbRpMmABLlsAXX0CjRuk+TZEiprBFz57Qty/s3QtNmpjltWrXztI7EJE8zG7PXDVq1IiVK1fa63QiIiIiafP2NpnR4sVmrt/u3dC0qSl+EROToVO1bGmqvyctr9W8uSmAISJyO+ySXF26dIkPPviAkiVL3tbxkydPJjAwEHd3dxo2bMiGDRtu2n7evHlUqVIFd3d3atSowdKlS1N8f/HiRUJCQihVqhQFChSgWrVqTJky5bZiExERkRzqwQfhzz/h0UchMRHeeQfKloU33oCzZ9N9moAAWLPGPNp14YJZv3j27CyNXETyqAwnV0WKFKFo0aLJW5EiRShUqBDTpk3j3XffzXAAc+fOJTQ0lBEjRhAeHk5QUBDBwcGcOnUqzfZr166lZ8+e9OvXjy1bttChQwc6dOjAjh07ktuEhoaybNkyvvrqK3bu3Mmzzz5LSEgIixYtynB8IiIikoMVKQJffgkLFkC5cnDmDAwfDmXKmIeqjh1L12m8vc2UwG7dID4eHnnELLclIpIRGU6u3nvvvRTbBx98wOLFizl06BDt2rXLcAATJkygf//+9OnTJ3mEycPDg2nTpqXZ/v333+f+++9nyJAhVK1alTfeeIM6deowadKk5DZr166ld+/e3HPPPQQGBjJgwACCgoJuOSImIiIiuVSHDrBnjxlyqlkTLl402VG5cvC//5nvbsHNDb7+GgYPNp9feMGsjZWYmPXhi0jekOGCFo8//rjdLh4XF8fmzZsZNmxY8j6r1UrLli1Zt25dmsesW7eO0NDQFPuCg4NZuHBh8ucmTZqwaNEi+vbtS0BAAKtWrWLPnj289957aZ4zNjaW2NjY5M9RUVFwtRJifHx8pu8zM5Ku7+g4JHdS/5HMUP+RzHBY/+nSBTp3xvLTT1jHjsX622/w+efYpk3D1rEjCS++CHXq3PQUY8eCv7+VYcOcmDABjh1L5PPPE3B1zba7yPf054/crqzoOxk5V4aTq+nTp1OwYEG6du2aYv+8efOIiYmhd+/e6T7XmTNnSEhIwM/PL8V+Pz8/du3aleYxkZGRabaPjIxM/vzhhx8yYMAASpUqhbOzM1arlalTp9KsWbM0zzl69Og0y8gvX74cDw+PdN9PVgoLC3N0CJKLqf9IZqj/SGY4tP+88AJFH3yQSt9+i/+mTVi++w7rd99xKiiIvZ07c6ZGDbPCcBqqVoXBg0sxaVJt5s61smvXGV56aSMeHley/TbyM/35I7fLnn0nJgOFcjKcXI0ePZpPPvkk1X5fX18GDBiQoeQqq3z44Yf88ccfLFq0iLJly7JmzRoGDRpEQEAALVu2TNV+2LBhKUbDoqKiKF26NK1bt8bLyyubo08pPj6esLAwWrVqhYuLi0NjkdxH/UcyQ/1HMiPH9J82beD554nfvh2n8eOxzJ2L79at+G7dSmL9+iQOGYKtXTuwpn5Sok0baN06kW7dLGzd6ss777Thhx+u4O/vkDvJV3JM/5FcJyv6TtKstvTIcHJ1+PBhypUrl2p/2bJlOXz4cIbO5ePjg5OTEydPnkyx/+TJk/jf4E8uf3//m7a/dOkSL7/8MgsWLODBBx8EoGbNmkRERDBu3Lg0kys3Nzfc3NxS7Xdxcckx/4POSbFI7qP+I5mh/iOZkWP6T506MGsWvPUWjBsHn3+OdeNGrN26QeXKptJgGmt5tmkDq1aZwoRbt1po3tyFZcvgjjscchf5To7pP5Lr2LPvZOQ8GS5o4evry7Zt21Lt37p1K8WKFcvQuVxdXalbt26K9bESExNZuXIljRs3TvOYxo0bp1pPKywsLLl90nNS1v/8C5STkxOJeiJVREQkfwsMhEmT4NAheOUVUyZw927o2BG++irNQ+rVg7VroUIFOHjQLKm1fn22Ry4iuUCGk6uePXvyzDPP8Msvv5CQkEBCQgI///wzgwcPpkePHhkOIDQ0lKlTpzJjxgx27tzJwIEDiY6Opk+fPgD06tUrRcGLwYMHs2zZMsaPH8+uXbsYOXIkmzZtIiQkBAAvLy+aN2/OkCFDWLVqFQcPHuSLL75g5syZdOzYMcPxiYiISB7k6wtvvgmHD5tqgjYb9O4N33yTZvMKFUyCVa+eqfbeogX8Z5lNEZGMTwt84403+Pvvv7nvvvtwdjaHJyYm0qtXL95+++0MB9C9e3dOnz7N8OHDiYyMpFatWixbtiy5aMXhw4dTjEI1adKE2bNn8+qrr/Lyyy9TqVIlFi5cSPXq1ZPbzJkzh2HDhvHII4/w77//UrZsWd566y2efPLJDMcnIiIieZiXF3zyiUmuPv8cHn4YXFzMSNZ/+PrCL7+YgoQ//QTt2sFnn4EdCymLSC6X4eTK1dWVuXPn8uabbxIREUGBAgWoUaMGZcuWve0gQkJCkkee/mvVqlWp9nXt2jVVtcLr+fv7M3369NuOR0RERPIRqxU+/dSsHjxzJnTvDt9+C23bpmpasCD88AP062fWLu7Tx6xT/PLLNyw8KCL5SIaTqySVKlWiUqVK9o1GRERExBGsVpg2zSRYX39thqe+/x7uvz9VUxcXmDEDAgJMHYxXX4UjR8yjXM63/TcrEckLMvzMVefOnXnnnXdS7R87duxNR5NEREREcjQnJzNy1bkzxMVBhw6wYkWaTS0WGDMGPvzQvP/kE3NYBpbDEZE8KMPJ1Zo1a2jTpk2q/Q888ABr1qyxV1wiIiIi2c/Z2YxctW8PsbHmwao0HlFIEhIC8+eDmxssWgT33WcKXohI/pTh5OrixYu4urqm2u/i4pKhBbZEREREciQXF5g71yxydekSPPQQ/PbbDZt36mQGuIoUgT/+gCZN4MCBbI1YRHKIDCdXNWrUYO7cuan2z5kzh2rVqtkrLhERERHHcXMzRS1atYLoaJNo/fHHDZvfdRf8/juUKQN790LjxrB5c7ZGLCI5QIYfu3zttdfo1KkT+/fvp0WLFgCsXLmS2bNnM3/+/KyIUURERCT7ubvDwoVm5OqXX0xxixUrzGJXaahaFdatM3nY1q3QvLmZMphGTQwRyaMyPHLVtm1bFi5cyL59+3jqqad4/vnnOXbsGD///DMVK1bMmihFREREHMHDw9Rev/tuOH8eWreGiIgbNg8IgDVrzLNX0dGmmvsXX2RrxCLiQBlOrgAefPBBfv/9d6Kjozlw4ADdunXjhRdeICgoyP4RioiIiDiSpycsWWLm+p09Cy1bwo4dN2zu5QVLl8Ijj8CVK2YtrDffNOsUi0jedlvJFVerBvbu3ZuAgADGjx9PixYt+OMmc5FFREREcq1CheDHH6F+ffjnHzM0tXPnDZu7upqq7i+9ZD6/9ho8+aRJtkQk78pQchUZGcmYMWOoVKkSXbt2xcvLi9jYWBYuXMiYMWOoX79+1kUqIiIi4kje3vDTT1C7Npw6BS1awJ49N2xutaZcC+vTT01lQa2FJZJ3pTu5atu2LZUrV2bbtm1MnDiR48eP8+GHH2ZtdCIiIiI5SZEiEBYGNWpAZKRJsA4duukh16+F9cMP5pDTp7MtYhHJRulOrn788Uf69evHqFGjePDBB3FycsrayERERERyomLFTNXAatXg2DF48EFT7OImrl8La/16aNoUDh7MtohFJJukO7n67bffuHDhAnXr1qVhw4ZMmjSJM1qCXERERPIjX19YtgxKlIA//4SuXSE+/qaH/HctrJYt4eTJbItYRLJBupOrRo0aMXXqVE6cOMETTzzBnDlzCAgIIDExkbCwMC5cuJC1kYqIiIjkJKVLw+LFpppgWBg89dQtSwImrYVVvjwcOGAGvS5ezLaIRSSLZbhaoKenJ3379uW3335j+/btPP/884wZMwZfX1/atWuXNVGKiIiI5ER16sCcOaZ6xWefwdixtzwkIMAMevn4wObN6Rr0EpFc4rZLsQNUrlyZsWPHcvToUb7++mv7RSUiIiKSWzz0EEycaN4PHQrffHPLQypVMoNeBQqYRGvAAK2DJZIXZCq5SuLk5ESHDh1YtGiRPU4nIiIikrs8/TQMHmze9+pl5v7dQsOGJg+zWuGLL2D48KwPU0Syll2SKxEREZF8b/x4aNcOYmPN64EDtzzkoYdgyhTz/s034ZNPsj5MEck6Sq5ERERE7MHJCWbPNs9hnTkDbdrAv//e8rD+/a+NWj31FGgikEjupeRKRERExF48Pc1KwaVLw+7dZoGruLhbHjZyJPTtC4mJ0KNHumYVikgOpORKRERExJ4CAmDJEihUCFavhv/975bVKiwWMz2wTRu4dAnatjW5mYjkLkquREREROytRg2YN89MFfzyS3jjjVse4uJiClzUrw///AP33w+RkdkSrYjYiZIrERERkawQHAwffWTejxgBX311y0M8PU2J9goV4O+/zSLDFy5kfagiYh9KrkRERESyyoAB8OKL5n3fvrBmzS0P8fU1a18VLw7h4dClixYZFsktlFyJiIiIZKXRo6FzZ5MhdeiQroepKlY0j215eMDy5el6bEtEcgAlVyIiIiJZyWo1z101bAhnz5q5fqdP3/Kw+vXNM1hOTjBzJrz6arZEKyKZoORKREREJKsVKGAWsAoMhP37zQjW5cu3POzBB68tLPz22/Dxx1kfqojcPiVXIiIiItnB1xeWLoXChWHtWnjuuXQd1q8fjBpl3oeEwMKFWRumiNw+JVciIiIi2aVqVVOiHcyQ1IYN6Trstdegf3+zyHC3bjBjRtaGKSK3R8mViIiISHZq2RJ69TIVKgYNgoSEWx5isZiq7t26mboYjz8OL79ski0RyTmUXImIiIhkt7FjwcsLNm2Czz5L1yHOzvD11/DKK+bz6NHQtStER2dtqCKSfkquRERERLKbnx+8+aZ5P2wYnDmTrsOsVnPYzJng6grffQfNm8Px41kbroikj5IrEREREUcYOBCCgkx59mHDMnToY4/BypXg4wObN0ODBmbBYRFxLCVXIiIiIo7g7AyTJ5v3n30G69dn6PC77jKHVK0Kx47B3XerkqCIo+WI5Gry5MkEBgbi7u5Ow4YN2XCLyjnz5s2jSpUquLu7U6NGDZYuXZqqzc6dO2nXrh3e3t54enpSv359Dh8+nIV3ISIiIpJBTZua6hSQ7uIW1ytfHtatg9atISYGOnWCd94xtTJEJPs5PLmaO3cuoaGhjBgxgvDwcIKCgggODubUqVNptl+7di09e/akX79+bNmyhQ4dOtChQwd27NiR3Gb//v3cddddVKlShVWrVrFt2zZee+013N3ds/HORERERNLhnXfA29vM75s6NcOHe3vDkiUmN7PZYOhQszZWXFyWRCsiN+Hw5GrChAn079+fPn36UK1aNaZMmYKHhwfTpk1Ls/3777/P/fffz5AhQ6hatSpvvPEGderUYdKkScltXnnlFdq0acPYsWOpXbs2FSpUoF27dvj6+mbjnYmIiIikg6/vteIWL78Mp09n+BTOzjBpEnz4oSl6MX06tGqV7joZImInzo68eFxcHJs3b2bYdQ9xWq1WWrZsybp169I8Zt26dYSGhqbYFxwczMKrk4wTExNZsmQJL774IsHBwWzZsoVy5coxbNgwOnTokOY5Y2NjiY2NTf4cFRUFQHx8PPHx8Xa519uVdH1HxyG5k/qPZIb6j2SG+k8G9euH82efYdm6lcSXXiLhk09u6zRPPAGBgRYeecSJNWssNGpkY8GCK1SpYveIs5T6j9yurOg7GTmXQ5OrM2fOkJCQgJ+fX4r9fn5+7Nq1K81jIiMj02wfGRkJwKlTp7h48SJjxozhzTff5J133mHZsmV06tSJX375hebNm6c65+jRoxk1alSq/cuXL8fDwyOTd2kfYWFhjg5BcjH1H8kM9R/JDPWf9CvSsyfNtm7FOn06v1WpwtnKlW/7XG++WYg332zI/v2eNGoEL720kaCgjI+IOZr6j9wue/admJiYdLd1aHKVFRKvLlXevn17nnvuOQBq1arF2rVrmTJlSprJ1bBhw1KMhkVFRVG6dGlat26Nl5dXNkafWnx8PGFhYbRq1QoXFxeHxiK5j/qPZIb6j2SG+s9taNOGxJ07sc6Ywd1z5nBl7Vpwcrrt03XuDF26JLJunQuvv96Y999PZMCARLuGnFXUf+R2ZUXfSZrVlh4OTa58fHxwcnLi5MmTKfafPHkSf3//NI/x9/e/aXsfHx+cnZ2pVq1aijZVq1blt99+S/Ocbm5uuLm5pdrv4uKSY/4HnZNikdxH/UcyQ/1HMkP9J4PGjoXvv8eyZQsu06ebtbBuU0AA/Pwz9O8PX31lISTEiU2bnPjwQyhY0K5RZxn1H7ld9uw7GTmPQwtauLq6UrduXVauXJm8LzExkZUrV9K4ceM0j2ncuHGK9lwd9ktq7+rqSv369dm9e3eKNnv27KFs2bJZch8iIiIidmGH4hbXc3eHmTPhrbdMoYsvvoA6dWDTJvuEKyIpObxaYGhoKFOnTmXGjBns3LmTgQMHEh0dTZ8+fQDo1atXioIXgwcPZtmyZYwfP55du3YxcuRINm3aREhISHKbIUOGMHfuXKZOncq+ffuYNGkSP/zwA0899ZRD7lFEREQk3Z58EmrXhnPnTF31TLJYTJ72yy9QqhTs3QuNG5tBssTcMUtQJNdweHLVvXt3xo0bx/Dhw6lVqxYREREsW7YsuWjF4cOHOXHiRHL7Jk2aMHv2bD799FOCgoKYP38+CxcupHr16sltOnbsyJQpUxg7diw1atTgs88+49tvv+Wuu+5yyD2KiIiIpJuTE0yebN5Pm2ZWCbaDZs1g61bzLNaVK/DSS2bx4ePH7XJ6EXH0M1dJQkJCUow8XW/VqlWp9nXt2pWuXbve9Jx9+/alb9++dotRREREJNs0bgx9+5rk6qmnzDy+TBS3SFK0KMybB59/DoMHw8qVULOmWRerbVu7RC6Srzl85EpERERE0jBmDBQuDBERMGWK3U5rscD//gebN0OtWvDPP9CuHYSEwKVLdruMSL6k5EpEREQkJype3FSiAHjlFTh1yq6nr1IF/vgDklajmTwZ6teH7dvtehmRfEXJlYiIiEhO9cQTprjF+fN2KW7xX25uMH48LFsGfn7w558mwZo0CWw2u19OJM9TciUiIiKSUzk5wUcfmffTp8PatVlymeBg2LYNHngAYmPh6afNVMFMVoIXyXeUXImIiIjkZI0aQb9+5v2gQabUXxbw9YUlS+D998HVFRYvhqAgWLEiSy4nkicpuRIRERHJ6UaPhiJF7F7c4r8sFnjmGdiwAapWhRMnoFUrePVVrYklkh5KrkRERERyuuLF4e23zfsXXoA33jDz97JIUJCp/v7kk+bzW29B9+6qJihyK0quRERERHKD/v3Ng1CxsTB8ONSoAcuXZ9nlPDzg449hxgxwcYH58+Gee+DkySy7pEiup+RKREREJDdwcoKFC+Hrr6FECdi711Si6NoVjh7Nssv26gVhYWZW4oYN0LChqSooIqkpuRIRERHJLSwW6NEDdu2CZ581Cdf8+WbRqnHjID4+Sy7bvLlZE6tiRTh0CJo0MQmXiKSk5EpEREQkt/Hygvfeg82bTaYTHQ1Dhpg1sdasyZJL3nGHSbDuvhuiokzZ9k8/zZJLieRaSq5EREREcqugIPj1V5g2DXx8zHy95s3NXL4seDiqWDEzYvXoo5CQYNY4fuEF815ElFyJiIiI5G5WK/TpA7t3m2zHYoEvv4TKlWHSJLtnPm5uMHMmvP66+Tx+PHTpYgbPRPI7JVciIiIieUHRomYNrPXroW5dOH8enn4aGjQw++zIYoHXXoPZs82CwwsXmgGz48ftehmRXEfJlYiIiEheUr++SaY++ggKF4bwcGjcGAYMgHPn7Hqpnj3h55/NjMTNm00lwW3b7HoJkVxFyZWIiIhIXuPkBAMHmqmCvXuDzQZTp5pntOxc8KJpU1PoonJlUxG+aVNYutSulxDJNZRciYiIiORVvr7wxRcmoapQAQ4fNisBv/wyxMXZ7TIVKsC6dXDvvXDxIrRtC5Mn2+30IrmGkisRERGRvO7uu2HLFlP4wmaD0aNNCffdu+12iSJFYNky6NsXEhMhJMQsxZWYaLdLiOR4Sq5ERERE8oNChUzJ9nnzTCa0eTPUqWMWq7LZ7HIJV1f47DOTuwG8/z688opdTi2SKyi5EhEREclPunQxVSdatICYGFO+vWNHOH3aLqe3WGDoUPj8c/N5zBhTxFAkP1ByJSIiIpLflCplVgMeN84MN33/PdSsCT/9ZLdL9O0Lo0aZ94MGwQ8/2O3UIjmWkisRERGR/Mhqheefhw0boFo1iIyE+++HwYPh8mW7XOK116BfP/PcVY8e5lIieZmSKxEREZH8LCgINm0yFSgAPvjArJVlhwWrLBb4+GOTs8XEwEMPwf79mQ9ZJKdSciUiIiKS3xUoAB9+aBao8vODHTtMgvXee5ku9+fiAt98A7Vrm8e6HngAzpyxW+QiOYqSKxERERExHnjAjFi1bWvWwQoNheBgOH48U6ctVAiWLIGyZWHvXmjXDi5dslvUIjmGkisRERERucbX1xS4mDLFjGitWAH33Wfm9WVCiRLw449QuLBZcPiRRyAhwW5Ri+QISq5EREREJCWLxZRoDw83WdGuXTBkSKZPW7WqydtcXWHBAjMwZqcltkRyBCVXIiIiIpK2KlVgxgzz/qOPzDNZmdSsGcycad5/8IF5rEskr1ByJSIiIiI31qoVPPused+nD5w6lelTdu8O775r3j//PMybl+lTiuQISq5ERERE5OZGj4bq1U1i1a+fXebyPf/8tervjz0Gv/6a+TBFHE3JlYiIiIjcnLs7zJplHpZavBg++STTp7RYYOJE6NABYmOhfXvYudMu0Yo4jJIrEREREbm1mjVhzBjzPjQUdu/O9CmdnEzO1qgRnD1rKsFHRmY+VBFHUXIlIiIiIukzeDC0bGkWqXrkEbMWViZ5eMCiRVCxIhw6BA8+CBcv2iVakWyn5EpERERE0sdqhS++gKJFYfNmGDnSLqctXtysgeXjY6q/P/ywEwkJFrucWyQ7KbkSERERkfQrWRI+/dS8HzMG1qyxy2krVjSPcxUoAMuWWXn33XpcumSXU4tkmxyRXE2ePJnAwEDc3d1p2LAhGzZsuGn7efPmUaVKFdzd3alRowZLb7LmwpNPPonFYmHixIlZELmIiIhIPtS5synLbrOZUn/nz9vltA0bwty54Opq448/AggOduLMGbucWiRbODy5mjt3LqGhoYwYMYLw8HCCgoIIDg7m1A3WUFi7di09e/akX79+bNmyhQ4dOtChQwd27NiRqu2CBQv4448/CAgIyIY7EREREclH3n8fypeHw4dh0CC7nbZtW1i6NAFPzzj++MNK48awb5/dTi+SpZwdHcCECRPo378/ffr0AWDKlCksWbKEadOmMXTo0FTt33//fe6//36GDBkCwBtvvEFYWBiTJk1iypQpye2OHTvG008/zU8//cSDDz540xhiY2OJjY1N/hwVFQVAfHw88fHxdrvX25F0fUfHIbmT+o9khvqPZIb6Tz7g7o7liy9wuvdeLLNmcSU4GFuPHnY5dePG8YwZs453372XffusNG5sY+HCBBo0yPz6WpK3ZcWfPRk5l0OTq7i4ODZv3sywYcOS91mtVlq2bMm6devSPGbdunWEhoam2BccHMzChQuTPycmJvLYY48xZMgQ7rzzzlvGMXr0aEaNGpVq//Lly/Hw8MjgXWWNsLAwR4cguZj6j2SG+o9khvpP3le5SxeqzJ2L7ckn+eXyZS75+trlvKVLw6hRy3njjUYcOFCYFi0gNDScRo1Uq11uzZ5/9sTExKS7rUOTqzNnzpCQkICfn1+K/X5+fuzatSvNYyIjI9NsH3ndogjvvPMOzs7OPPPMM+mKY9iwYSkStqioKEqXLk3r1q3x8vLK4F3ZV3x8PGFhYbRq1QoXFxeHxiK5j/qPZIb6j2SG+k8+0ro1iQcP4rJhAy2/+oqEn34yC1hlQlL/6datGe3bu/DII4n8+KMz77zTgAkTEhk0KNFu4UvekhV/9iTNaksPh08LtLfNmzfz/vvvEx4ejsWSvhKebm5uuLm5pdrv4uKSY/4PISfFIrmP+o9khvqPZIb6Tz7g4mJWAq5VC+uaNVjffx9eeslOp3bBw8OFRYvMY12ffmrhueecOHLEiXffNZXhRdJizz97MnIeh3ZJHx8fnJycOHnyZIr9J0+exN/fP81j/P39b9r+119/5dSpU5QpUwZnZ2ecnZ05dOgQzz//PIGBgVl4NyIiIiL5VMWK8MEH5v1rr5nFquzI2RmmTIHRo83nCROge3e4fNmulxHJNIcmV66urtStW5eVK1cm70tMTGTlypU0btw4zWMaN26coj1X51QmtX/sscfYtm0bERERyVtAQABDhgzhp59+yuI7EhEREcmn+vSBjh0hPh4efhgy8JxKelgsMHSoGSRzcYH586FlS/jnH7teRiRTHD4tMDQ0lN69e1OvXj0aNGjAxIkTiY6OTq4e2KtXL0qWLMnoq/9UMXjwYJo3b8748eN58MEHmTNnDps2beLTq4vZFStWjGLFiqW4houLC/7+/lSuXNkBdygiIiKSD1gsMHUq/PEH7N4NQ4bA5Ml2v8zDD0NAAHToAL//Dk2awI8/mqrwIo7m8Jmq3bt3Z9y4cQwfPpxatWoRERHBsmXLkotWHD58mBMnTiS3b9KkCbNnz+bTTz8lKCiI+fPns3DhQqpXr+7AuxARERERihWDL74w7z/6CJYsyZLL3HOPSazKlIE9e6BRI9iwIUsuJZIhDh+5AggJCSEkJCTN71atWpVqX9euXenatWu6z//3339nKj4RERERSafWrWHwYLPIcJ8+sHw51Kpl98vceacZJHvwQdiyxSRcc+ZAu3Z2v5RIujl85EpERERE8pgxYyAoCE6fhqZNYd68LLlMiRKwZg088ABcumQe+cqCmYgi6abkSkRERETsy90dfvnFjGLFxEC3bvDqq5Bo//WpChaERYvgf/8zpw8JMY97ZcGlRG5JyZWIiIiI2F+RIuaZqxdeMJ/festUocjAgqzp5ewMn35qLgEwbhz06KFS7ZL9lFyJiIiISNZwdoZ334WZM8HNDX74wVSf2LvX7peyWODll+Grr0yp9nnzVKpdsp+SKxERERHJWo89Br/+amqo79wJDRqYQhdZ4JFH4KefwNv7Wqn2/fuz5FIiqSi5EhEREZGsV78+bNoEjRvDuXOmCsWECWCz2f1S996bslR748awfr3dLyOSipIrEREREckeJUqYQhd9+5qKE88/D717m1J/dpZUqr1OHVO08N574fvv7X4ZkRSUXImIiIhI9nFzg88+gw8+ACcn+PJLaN4cjh2z+6VKlIDVq6FNm2ul2j/80O6XEUmm5EpEREREspfFAk8/bZ67KloUNm6EevVg3Tq7X6pgQTNi9cQTZgbiM8+YATOVapesoORKRERERByjRQuTWNWoAZGRcM89MH263S/j7Awff2zWNgbzqFe3blkyG1HyOSVXIiIiIuI45cvD2rXQqRPExUHfvlhDQ7EkJNj1MhYLvPQSzJ4Nrq7w7bdw331w5oxdLyP5nJIrEREREXGsggXNwlSvvw6A06RJ3PnFF1lyqZ49ISwMChc2sxAbN4Z9+7LkUpIPKbkSEREREcezWuG112DOHADKL16MZePGLLlUs2ZmsCww0CRWjRtnyeNekg8puRIRERGRnKN7dxIffhiLzYbTwIEQH58ll6la1SRUdeuaqYEtWmTZusaSjyi5EhEREZEcJeHdd4krVAjLtm3w3ntZdh1/f1Oq/cEH4fJlaN8eVq3KsstJPqDkSkRERERyluLF2dGnj3k/ciQcOJBll/L0hO++g4ceMgnWQw/B779n2eUkj1NyJSIiIiI5zpF77yXx3ntNvfSBA80iVVnE1dXU02jdGqKj4YEHYP36LLuc5GFKrkREREQk57FYSJg0CdzczMNQs2dn6eXc3WHBArj3XrhwAYKDITw8Sy8peZCSKxERERHJmSpVguHDzftnn4V//snSy3l4wKJF0LQpnD8PrVrBtm1ZeknJY5RciYiIiEjO9cILcOedpqTfkCFZfrmCBWHpUmjYEP79F1q2hL/+yvLLSh6h5EpEREREci5XV5g6FSwWmD4dfv45yy/p5QXLlkGdOnD6NNx3H+zZk+WXlTxAyZWIiIiI5GyNG5uiFgBPPGGKXGSxwoXNo141akBkpFkHKwuLFkoeoeRKRERERHK+t9+GEiVg3z54661suWSxYrBihVlw+Ngxk2AdOpQtl5ZcSsmViIiIiOR83t4waZJ5/847sGNHtlzW1xdWrjS1NQ4dMlMEjx3LlktLLqTkSkRERERyh44doX17uHIFBgyAxMRsuWyJEuZRr3LlYP9+k2BFRmbLpSWXUXIlIiIiIrmDxQIffmhK+q1bB598km2XLlXKJFhlysDu3aaK4OnT2XZ5ySWUXImIiIhI7lG6tHn+CmDoUDh+PNsuHRhoEqyAAPjzT7MO1r//ZtvlJRdQciUiIiIiuctTT0GDBhAVBc88k62XrlDBJFh+frB1KwQHw7lz2RqC5GBKrkREREQkd3FyMmtfOTnBt9/C999n6+UrVzZVBIsVg02boFo1+Owz8yiY5G9KrkREREQk96lZE154wbwfNMiMYmWj6tVNghUYCCdOQP/+EBQEP/wANlu2hiI5iJIrEREREcmdhg+H8uVNbfRXX832y9eqBbt2wfjxULQo/PUXtGsHzZvD+vXZHo7kAEquRERERCR38vCAKVPM+0mTYMOGbA/BzQ1CQ02J9pdeAnd3+PVXaNQIunaFvXuzPSRxICVXIiIiIpJ7tWoFjz5q5uL17w/x8Q4Jo3BhGDMG9uyBxx83VePnzzfPYz39NJw65ZCwJJspuRIRERGR3G3CBDMvb9s2eOcdh4ZSujRMnw4REfDAA6bIxaRJpsrgm29CdLRDw5MsliOSq8mTJxMYGIi7uzsNGzZkwy2GdOfNm0eVKlVwd3enRo0aLF26NPm7+Ph4XnrpJWrUqIGnpycBAQH06tWL49m4BoKIiIiIZKPixc2DTwCvvWZGsv75x6Eh1awJS5easu316sHFiya0SpXg009VWTCvcnhyNXfuXEJDQxkxYgTh4eEEBQURHBzMqRuMna5du5aePXvSr18/tmzZQocOHejQoQM7duwAICYmhvDwcF577TXCw8P57rvv2L17N+3atcvmOxMRERGRbNO7NwwbBlYrzJoFd94JCxY4OiruvdcUt5gzB8qVM5UFn3gCatSAefMgLs7REYo9OTy5mjBhAv3796dPnz5Uq1aNKVOm4OHhwbRp09Js//7773P//fczZMgQqlatyhtvvEGdOnWYNGkSAN7e3oSFhdGtWzcqV65Mo0aNmDRpEps3b+bw4cPZfHciIiIiki0sFnj7bVi7FqpWhZMnoVMn6NEDTp92aGhWK3TvbioLvv++WR9r1y7o1g0CAswzWZs2qYR7XuDsyIvHxcWxefNmhg0blrzParXSsmVL1q1bl+Yx69atIzQ0NMW+4OBgFi5ceMPrnD9/HovFQuHChdP8PjY2ltjY2OTPUVfXSYiPjyfeQQ9FJkm6vqPjkNxJ/UcyQ/1HMkP9RzIjU/2nTh1Yvx7rG29gnTABy9y52H7+mYT338fWpYv9g80AiwUGDoSHH4b33rMyfbqVEycsTJpknsuqWtXGY48l8vDDiQQEODTUXCsr/uzJyLksNpvjcuTjx49TsmRJ1q5dS+PGjZP3v/jii6xevZr1aSwQ4OrqyowZM+jZs2fyvo8++ohRo0Zx8uTJVO0vX75M06ZNqVKlCrNmzUozjpEjRzJq1KhU+2fPno2Hh0cm7lBEREREHKXwvn3U/uADvK7OXjreuDHbnniC2Bv8g3t2S0iwsHVrcX75pTTr15cgLs4JAKvVRlDQKe699wgNG57AzS3R0aHmazExMTz88MOcP38eLy+vm7Z16MhVVouPj6dbt27YbDY+/vjjG7YbNmxYitGwqKgoSpcuTevWrW/5A2a1+Ph4wsLCaNWqFS4uLg6NRXIf9R/JDPUfyQz1H8kMu/afJ54gYfRorGPHErBuHSX27CFhwgRsPXqYoSQHa9vWrH98/nwi8+fb+PJLK2vXWtmyxY8tW/zw8rLRpYsZ0WrSxJYTQs7RsuLPnqRZbenh0OTKx8cHJyenVCNOJ0+exN/fP81j/P3909U+KbE6dOgQP//8802TJDc3N9zc3FLtd3FxyTH/h5CTYpHcR/1HMkP9RzJD/Ucywy79x8UF3noLunSBPn2wbN2Kc+/e8O23ZgHiEiXsFW6m+PjAk0+abf9+mDnTbH//bWHaNAvTplkpXx569TJbuXKOjjhns+efPRk5j0MLWri6ulK3bl1WrlyZvC8xMZGVK1emmCZ4vcaNG6doDxAWFpaifVJitXfvXlasWEGxYsWy8C5EREREJMerXRs2boRRo0zCtWiRWeF3xowcV0miQgUT5v79sGoV9OkDBQvCgQMwciSUL2+qDT7/PPz0E8TEODpiSeLwaoGhoaFMnTqVGTNmsHPnTgYOHEh0dDR9+vQBoFevXikKXgwePJhly5Yxfvx4du3axciRI9m0aRMhISFwNbHq0qULmzZtYtasWSQkJBAZGUlkZCRxqnUpIiIikn+5uMDw4bB5M9StC+fOweOPw0MPwdGjjo4uFasVmjeHadMgMhK+/BJatjSzGXfsMGsn33+/WT+5VSt4913YujXH5Yr5isOTq+7duzNu3DiGDx9OrVq1iIiIYNmyZfj5+QFw+PBhTpw4kdy+SZMmzJ49m08//ZSgoCDmz5/PwoULqV69OgDHjh1j0aJFHD16lFq1alGiRInkbe3atQ67TxERERHJIWrUgD/+MKXbXV3Nar/Vq8Py5Y6O7IY8Pc3ayGFhprL8N99Av35QujTExsKKFfDii1Crlpnp2KsXfPWVqUgv2SdHFLQICQlJHnn6r1WrVqXa17VrV7p27Zpm+8DAQBxYAFFEREREcgNnZ7PocPv2Zt7dhg3w4IPw2WdmQeIcrFgx6NrVbDYb7N5t8sLly+GXX0xC9eWXZgMICoLWrc1Wvz54ezv6DvKuHJFciYiIiIg4RLVqsGaNSbC+/tpMEzx6FF5+OUdUE7wViwWqVDHbM8+YUay1a68lW+HhZqrg1q1m2iCYaYQVKlzbype/9j4gwExHlNuj5EpERERE8jc3NzOHrnRpGDvW1EY/csSs7Oucu/667OYG995rttGjzRTCFStMorVihckb//3XbBs3pn18uXKpE68qVcxrLsg3HSp39RYRERERkaxgtcI775gE65ln4JNP4PhxM5rl6eno6G5b8eLQs6fZAC5cgIMHTSXCpO3AAfN66JAZ+dq1y2z/5esLTZpA06Zmq1PHJGNyjZIrEREREZEkISFmbtwjj8APP0CLFrB4sclS8oBChaBmTbP915UrcPjwtWTr+sRr5044dQoWLjQbV0e56te/lnA1aWLW68rPlFyJiIiIiFyvUyczh65dO1PookkTWLbMzIvLw5ydzTTA8uVNyffrxcaaCva//35tO3MGfvvNbEkqV742stW0KdxxR/6aSqjkSkRERETkv5o2NRnEAw/Avn3QuDEsWWKGavIhNzeTYzZpAkOGmCqFe/emTLZ27TKVC3fvNmtzgRnJql3bVCysVcu8Vq5slhzLi5RciYiIiIikpUoVWLcO2rSBLVvgnnvMAlMPPujoyBzOYjGjUnfcYQotAvzzj6lUmJRsbdxoRrfCwsyWxNUV7rwzZcIVFARFijjsduxGyZWIiIiIyI34+8Pq1WZRqZ9+MutiTZkC//ufoyPLcYoVg7ZtzcbVqYRbt0JExLVy8Nu2maIaW7aY7XqlS6dOuCpUyF2l4ZVciYiIiIjcTKFCprjFgAHwxRfQv78p1T5yZP56oCiD3NygQQOzJUlMhL//Tplwbd1q9h05YrbFi6+1v3ABChZ0SPi3RcmViIiIiMituLiYB4lKl4Y33oDXXzeZwCef5N0HiLKA1XqtaEanTtf2nz9vRrWSkq2ICLh8OXclVii5EhERERFJJ4vFJFWlSsHAgTB9Opw4AS+8AAkJppZ5RrbSpc00Qw8PR9+Zw3l7w913my2JzebIiG6PkisRERERkYwYMMCshdWtmynRvmzZ7Z/L2xsefdRMNQwKsmeUuV5unHGp5EpEREREJKMeeghWrTKjVmfPmkWiMrJZrbBmjXnYaPJks9WrZ5Ksnj3Nc16S6yi5EhERERG5HQ0amATpdiUmwsqVMHUqLFwImzaZLTQUevQwiVaDBrlzCCefUnIlIiIiIuIIViu0amW2U6dg5kz47DOzCu/nn5utRg2TZD36aMYWgrLZzMJTf/99bTtyBMqVM6NuFStm5Z3lW0quREREREQczdfXTDF8/nn49VczmjV/PmzfDs88Ay++CF26mEQrqerDv/+apOngwZRJVNIWHZ32tZ57ziyQ/NBDZlGqJk3MVEXJNP2KIiIiIiI5hcUCzZqZ7YMPYNYsk2ht2wZffWW2EiXMAlAXL976fCVKQGCg2UqWhPBwM5Vx1y6zjRtnRsQeeMAkWsHBGRshkxSUXImIiIiI5ERFikBICAwaBBs3miTr669N+fck/v4mcSpX7loSlbSVKQPu7qnPe+4cLF9uFkZeutSMgM2ebTYnJzMy1ratGdm6445sveXcTsmViIiIiEhOZrGYwhYNGsCECbBlC/j5meSpQIGMn69wYVNGvls3sz7XunWweLFJtv76y1RBXLXKTFG84w6TZN13n7leQIBJ+lRkI01KrkREREREcotChcyUQXtxcoK77jLbmDFw4MC1RGv1atizxyR0EyZcO8bd3SRZJUua1xu9z4eLIyu5EhERERERo3x5U0DjmWcgKura9MHwcDh+3EwhvHzZJGEHDtz8XIULmxE2q9WMkCUmmtf0bm5uNy7KkUMpuRIRERERkdS8vEyFwi5dru27fNk883XsmEm2jh+/9v7615gY82zXuXO3f/0rV+xyG9lJyZWIiIiIiKSPu7spnlGu3I3b2Gxm1Ov4cTh50nx2crq9LZdRciUiIiIiIvZjsYC3t9mqVnV0NNnK6ugARERERERE8gIlVyIiIiIiInag5EpERERERMQOlFyJiIiIiIjYgZIrERERERERO1ByJSIiIiIiYgdKrkREREREROxAyZWIiIiIiIgdKLkSERERERGxAyVXIiIiIiIidpAjkqvJkycTGBiIu7s7DRs2ZMOGDTdtP2/ePKpUqYK7uzs1atRg6dKlKb632WwMHz6cEiVKUKBAAVq2bMnevXuz+C5ERERERCQ/c3hyNXfuXEJDQxkxYgTh4eEEBQURHBzMqVOn0my/du1aevbsSb9+/diyZQsdOnSgQ4cO7NixI7nN2LFj+eCDD5gyZQrr16/H09OT4OBgLl++nI13JiIiIiIi+YnDk6sJEybQv39/+vTpQ7Vq1ZgyZQoeHh5MmzYtzfbvv/8+999/P0OGDKFq1aq88cYb1KlTh0mTJsHVUauJEyfy6quv0r59e2rWrMnMmTM5fvw4CxcuzOa7ExERERGR/MLZkRePi4tj8+bNDBs2LHmf1WqlZcuWrFu3Ls1j1q1bR2hoaIp9wcHByYnTwYMHiYyMpGXLlsnfe3t707BhQ9atW0ePHj1SnTM2NpbY2Njkz1FRUQDEx8cTHx9vhzu9fUnXd3Qckjup/0hmqP9IZqj/SGao/8jtyoq+k5FzOTS5OnPmDAkJCfj5+aXY7+fnx65du9I8JjIyMs32kZGRyd8n7btRm/8aPXo0o0aNSrV/4cKFeHh4ZPCussb333/v6BAkF1P/kcxQ/5HMUP+RzFD/kdtlz74TExMDV2fI3YpDk6ucYtiwYSlGw44dO0a1atX43//+59C4REREREQkZ7hw4QLe3t43bePQ5MrHxwcnJydOnjyZYv/Jkyfx9/dP8xh/f/+btk96PXnyJCVKlEjRplatWmme083NDTc3t+TPBQsW5MiRIxQqVAiLxZKJO8y8qKgoSpcuzZEjR/Dy8nJoLJL7qP9IZqj/SGao/0hmqP/I7cqKvmOz2bhw4QIBAQG3bOvQ5MrV1ZW6deuycuVKOnToAEBiYiIrV64kJCQkzWMaN27MypUrefbZZ5P3hYWF0bhxYwDKlSuHv78/K1euTE6moqKiWL9+PQMHDkxXXFarlVKlStnhDu3Hy8tLf7jIbVP/kcxQ/5HMUP+RzFD/kdtl775zqxGrJA6fFhgaGkrv3r2pV68eDRo0YOLEiURHR9OnTx8AevXqRcmSJRk9ejQAgwcPpnnz5owfP54HH3yQOXPmsGnTJj799FMALBYLzz77LG+++SaVKlWiXLlyvPbaawQEBCQncCIiIiIiIvbm8OSqe/funD59muHDhxMZGUmtWrVYtmxZckGKw4cPY7VeqxjfpEkTZs+ezauvvsrLL79MpUqVWLhwIdWrV09u8+KLLxIdHc2AAQM4d+4cd911F8uWLcPd3d0h9ygiIiIiInmfxZaeshfiMLGxsYwePZphw4aleC5MJD3UfyQz1H8kM9R/JDPUf+R2ObrvKLkSERERERGxA2s62oiIiIiIiMgtKLkSERERERGxAyVXIiIiIiIidqDkSkRERERExA6UXOVwkydPJjAwEHd3dxo2bMiGDRscHZLkQGvWrKFt27YEBARgsVhYuHBhiu9tNhvDhw+nRIkSFChQgJYtW7J3716HxSs5x+jRo6lfvz6FChXC19eXDh06sHv37hRtLl++zKBBgyhWrBgFCxakc+fOnDx50mExS87x8ccfU7NmzeTFOhs3bsyPP/6Y/L36jqTXmDFjktcqTaL+IzczcuRILBZLiq1KlSrJ3zuq/yi5ysHmzp1LaGgoI0aMIDw8nKCgIIKDgzl16pSjQ5McJjo6mqCgICZPnpzm92PHjuWDDz5gypQprF+/Hk9PT4KDg7l8+XK2xyo5y+rVqxk0aBB//PEHYWFhxMfH07p1a6Kjo5PbPPfcc/zwww/MmzeP1atXc/z4cTp16uTQuCVnKFWqFGPGjGHz5s1s2rSJFi1a0L59e/78809Q35F02rhxI5988gk1a9ZMsV/9R27lzjvv5MSJE8nbb7/9lvydw/qPTXKsBg0a2Ab9v537D62q/uM4/rq63evdnHNz6947Y2viWmo4cMt5M4m6kruFMVlkcYmrBWLejYkIobSmJPhHUVbQoB/aH6ajCSsRzday/SFaMrk2aY4WlsJcS0rbRs7Y/Xz/+M5Dl8la7dq5s+cDDpzz+Zzd+76XF+fy3vkRiVjbw8PDJi8vz+zcudPWupDcJJnm5mZrOxaLGa/Xa1555RVr7MqVK8blcpn9+/fbVCWSVV9fn5Fk2trajBnJSmpqqmlqarL26ezsNJLMiRMnbKwUySorK8u89957ZAfj0t/fb4qKikxLS4t58MEHTW1trTEcezAO9fX1pqSk5KZzduaHM1dJ6vr162pvb9fy5cutsSlTpmj58uU6ceKErbVhcjl//rx6e3vjspSZmany8nKyhFGuXr0qScrOzpYktbe3648//ojLzz333KP8/HzygzjDw8NqbGzU4OCg/H4/2cG4RCIRPfbYY3E5EccejNN3332nvLw8zZkzR6FQSBcuXJBszk/KLX11/GOXL1/W8PCwPB5P3LjH49G5c+dsqwuTT29vrzSSnT/zeDzWHCBJsVhMGzdu1NKlS3XvvfdKI/lxOp2aOXNm3L7kBzd0dHTI7/fr2rVrmj59upqbmzV//nxFo1GygzE1Njbq9OnTOnXq1Kg5jj34K+Xl5frggw9UXFysS5cuafv27Vq2bJnOnj1ra35orgAA0sh/kM+ePRt3zTrwV4qLixWNRnX16lUdOHBA4XBYbW1tdpeFJHfx4kXV1taqpaVF06ZNs7scTELBYNBaX7hwocrLy1VQUKCPPvpIbrfbtrq4LDBJ5eTkaOrUqaOeavLTTz/J6/XaVhcmnxt5IUsYS3V1tQ4dOqRjx47pzjvvtMa9Xq+uX7+uK1euxO1PfnCD0+nU3LlzVVpaqp07d6qkpERvvPEG2cGY2tvb1dfXp0WLFiklJUUpKSlqa2vTm2++qZSUFHk8HvKDv2XmzJm6++671d3dbevxh+YqSTmdTpWWlqq1tdUai8Viam1tld/vt7U2TC6FhYXyer1xWfrtt9/01VdfkSXIGKPq6mo1Nzfriy++UGFhYdx8aWmpUlNT4/LT1dWlCxcukB/cVCwW09DQENnBmAKBgDo6OhSNRq2lrKxMoVDIWic/+DsGBgb0/fffy+fz2Xr84bLAJLZp0yaFw2GVlZVp8eLF2rVrlwYHB7V27Vq7S0OSGRgYUHd3t7V9/vx5RaNRZWdnKz8/Xxs3btSOHTtUVFSkwsJC1dXVKS8vT5WVlbbWDftFIhHt27dPn3zyiTIyMqxr0TMzM+V2u5WZmannnntOmzZtUnZ2tmbMmKGamhr5/X4tWbLE7vJhsy1btigYDCo/P1/9/f3at2+fvvzySx09epTsYEwZGRnWvZ03pKena9asWdY4+cFYNm/erJUrV6qgoEA9PT2qr6/X1KlT9fTTT9t7/LmlzyLEhL311lsmPz/fOJ1Os3jxYnPy5Em7S0ISOnbsmJE0agmHw8aMPI69rq7OeDwe43K5TCAQMF1dXXaXjSRws9xIMnv27LH2+f33382GDRtMVlaWSUtLM6tWrTKXLl2ytW4kh2effdYUFBQYp9NpcnNzTSAQMJ999pk1T3bwd/z5UeyG/OAvrF692vh8PuN0Os3s2bPN6tWrTXd3tzVvV34c5v8/rgAAAACACeCeKwAAAABIAJorAAAAAEgAmisAAAAASACaKwAAAABIAJorAAAAAEgAmisAAAAASACaKwAAAABIAJorAAAAAEgAmisAACbI4XDo448/trsMAIDNaK4AAJPamjVr5HA4Ri0VFRV2lwYA+I9JsbsAAAAmqqKiQnv27Ikbc7lcttUDAPhv4swVAGDSc7lc8nq9cUtWVpY0csleQ0ODgsGg3G635syZowMHDsT9fUdHhx5++GG53W7NmjVL69at08DAQNw+u3fv1oIFC+RyueTz+VRdXR03f/nyZa1atUppaWkqKirSwYMHrblff/1VoVBIubm5crvdKioqGtUMAgAmP5orAMBtr66uTlVVVTpz5oxCoZCeeuopdXZ2SpIGBwe1YsUKZWVl6dSpU2pqatLnn38e1zw1NDQoEolo3bp16ujo0MGDBzV37ty499i+fbuefPJJffPNN3r00UcVCoX0yy+/WO//7bff6siRI+rs7FRDQ4NycnL+5W8BAHCrOYwxxu4iAAD4p9asWaO9e/dq2rRpceNbt27V1q1b5XA4tH79ejU0NFhzS5Ys0aJFi/T222/r3Xff1QsvvKCLFy8qPT1dknT48GGtXLlSPT098ng8mj17ttauXasdO3bctAaHw6EXX3xRL7/8sjTSsE2fPl1HjhxRRUWFHn/8ceXk5Gj37t239LsAANiLe64AAJPeQw89FNc8SVJ2dra17vf74+b8fr+i0agkqbOzUyUlJVZjJUlLly5VLBZTV1eXHA6Henp6FAgExqxh4cKF1np6erpmzJihvr4+SdLzzz+vqqoqnT59Wo888ogqKyt1//33T/BTAwCSDc0VAGDSS09PH3WZXqK43e5x7Zeamhq37XA4FIvFJEnBYFA//vijDh8+rJaWFgUCAUUiEb366qu3pGYAgD245woAcNs7efLkqO158+ZJkubNm6czZ85ocHDQmj9+/LimTJmi4uJiZWRk6K677lJra+uEasjNzVU4HNbevXu1a9cuvfPOOxN6PQBA8uHMFQBg0hsaGlJvb2/cWEpKivXQiKamJpWVlemBBx7Qhx9+qK+//lrvv/++JCkUCqm+vl7hcFjbtm3Tzz//rJqaGj3zzDPyeDySpG3btmn9+vW64447FAwG1d/fr+PHj6umpmZc9b300ksqLS3VggULNDQ0pEOHDlnNHQDg9kFzBQCY9D799FP5fL64seLiYp07d04aeZJfY2OjNmzYIJ/Pp/3792v+/PmSpLS0NB09elS1tbW67777lJaWpqqqKr322mvWa4XDYV27dk2vv/66Nm/erJycHD3xxBPjrs/pdGrLli364Ycf5Ha7tWzZMjU2Nibs8wMAkgNPCwQA3NYcDoeam5tVWVlpdykAgNsc91wBAAAAQALQXAEAAABAAnDPFQDgtsbV7wCAfwtnrgAAAAAgAWiuAAAAACABaK4AAAAAIAForgAAAAAgAWiuAAAAACABaK4AAAAAIAForgAAAAAgAWiuAAAAACAB/gdKrnXNcDZxbwAAAABJRU5ErkJggg==",
- "text/plain": [
- "<Figure size 1000x500 with 1 Axes>"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
}
],
"source": [
+ "train_err = []\n",
+ "test_err = []\n",
+ "\n",
"for epoch in range(NEPOCHS):\n",
- " model.train() # set to training mode\n",
+ " model.train()\n",
" train_loss = 0\n",
- "\n",
" for batch_src, batch_labels, batch_padding_mask in train_loader:\n",
" optimizer.zero_grad()\n",
" output = model(batch_src, batch_padding_mask)\n",
@@ -556,118 +721,107 @@
" loss.backward()\n",
" optimizer.step()\n",
"\n",
- " # Evaluate performance\n",
- " model.eval()\n",
- " test_loss = 0\n",
- "\n",
- " with torch.no_grad():\n",
- " for batch_src, batch_labels, batch_padding_mask in test_loader:\n",
- " output = model(batch_src, batch_padding_mask)\n",
- " loss = criterion(output.squeeze(1), batch_labels)\n",
- " test_loss += loss.item()/len(test_loader)\n",
- "\n",
+ " test_loss = evaluate()\n",
+ " \n",
" test_err.append(test_loss)\n",
" train_err.append(train_loss)\n",
- " print(f\"Epoch {epoch + 1}/{NEPOCHS} \\t Train Err: {train_loss:.4f} \\t Test Err: {test_loss:.4f} \\t baseline err: {train_baseline:.4f}\")\n",
- "\n",
- "plt.figure(figsize=(10, 5))\n",
- "plt.plot(test_err, label='Test', color='red')\n",
- "plt.plot(train_err, label='Train', color='blue')\n",
- "plt.title('Accuracy vs Epochs')\n",
- "plt.xlabel('Epochs'); plt.ylabel('Accuracy')\n",
- "plt.legend(); plt.grid()\n",
- "plt.show()"
+ " ax.plot(train_err, label='Train', color='blue')\n",
+ " ax.plot(test_err, label='Test', color='red')\n",
+ " ax.set_xlabel('Epochs')\n",
+ " ax.set_ylabel('MSE')\n",
+ " fig.canvas.draw()\n",
+ " print(f\"Epoch {epoch + 1}/{NEPOCHS} \\t Train Err: {train_loss:.4f} \\t Test Err: {test_loss:.4f} \\t baseline err: {baseline_error:.4f}\")\n",
+ "\n",
+ " if epoch % 100 == 99:\n",
+ " torch.save(model.state_dict(), f\"model_weights_{epoch}.pth\")"
]
},
{
"cell_type": "code",
- "execution_count": null,
- "metadata": {
- "id": "v1hCiItHDWxJ"
- },
- "outputs": [],
+ "execution_count": 80,
+ "execution_state": "idle",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "55.06520214080811"
+ ]
+ },
+ "execution_count": 80,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "## Q: why is this not working so well?\n",
- "\n",
- "## maybe first try a simpler problem: just give it points for distinguishing between distance 1 or not"
+ "evaluate()"
]
},
{
"cell_type": "code",
- "execution_count": 47,
+ "execution_count": null,
+ "execution_state": "running",
"metadata": {
"id": "LoGEmM5lH7_A"
},
"outputs": [],
"source": [
"batch_src, batch_labels, batch_padding_mask = next(iter(train_loader))\n",
- "output = model(batch_src, batch_padding_mask)"
+ "output = model(batch_src, batch_padding_mask)\n",
+ "batch_src[0], batch_labels[0], output[0]"
]
},
{
"cell_type": "code",
- "execution_count": 33,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "hO8AhX3G7vF8",
- "outputId": "8f4a3ca6-db47-434d-95a4-4631bc73de62"
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "1 \t nan\n",
- "1 \t nan\n",
- "1 \t nan\n",
- "1 \t nan\n",
- "0 \t nan\n",
- "0 \t nan\n",
- "1 \t nan\n",
- "1 \t nan\n",
- "1 \t nan\n",
- "1 \t nan\n",
- "1 \t nan\n",
- "1 \t nan\n",
- "1 \t nan\n",
- "1 \t nan\n",
- "1 \t nan\n",
- "1 \t nan\n",
- "1 \t nan\n",
- "1 \t nan\n",
- "1 \t nan\n",
- "0 \t nan\n",
- "1 \t nan\n",
- "0 \t nan\n",
- "1 \t nan\n",
- "1 \t nan\n",
- "0 \t nan\n",
- "1 \t nan\n",
- "1 \t nan\n",
- "0 \t nan\n",
- "1 \t nan\n",
- "1 \t nan\n",
- "1 \t nan\n",
- "1 \t nan\n"
- ]
- }
- ],
+ "execution_count": null,
+ "execution_state": "running",
+ "metadata": {},
+ "outputs": [],
"source": [
- "for x,y in zip(batch_labels.tolist(), output.squeeze(1).tolist()):\n",
- " print(f\"{int(x)} \\t {y:.1f}\")"
+ "plt.hist(output.detach().cpu().numpy().flatten(),bins=32)"
]
},
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "id": "dRdUGbFmkPtK"
- },
+ "execution_state": "running",
+ "metadata": {},
"outputs": [],
"source": [
- "batch_src[2]"
+ "plt.hist(label.detach().cpu().numpy().flatten(),bins=32)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "execution_state": "running",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "plt.scatter(batch_labels.detach().cpu().numpy().flatten(),output.detach().cpu().numpy().flatten())"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "execution_state": "running",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "batch_src2, batch_labels2, batch_padding_mask2 = next(iter(test_loader))\n",
+ "output2 = model(batch_src2, batch_padding_mask2)\n",
+ "loss = criterion(output2.squeeze(1), batch_labels2)\n",
+ "batch_src2[0], batch_labels2[0], output2[0], loss"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "execution_state": "running",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "plt.scatter(batch_labels2.detach().cpu().numpy().flatten(),output2.detach().cpu().numpy().flatten())"
]
},
{
@@ -680,6 +834,91 @@
]
},
{
+ "cell_type": "code",
+ "execution_count": null,
+ "execution_state": "running",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "N_TUNE_EPOCHS = 100\n",
+ "TUNE_BSZ = 1024\n",
+ "TUNE_LR = 0.003\n",
+ "TUNE_WD = 0.002\n",
+ "\n",
+ "with open(\"tune_data.pkl\", \"rb\") as f:\n",
+ " pickled_tune_stuff = pickle.load(f)\n",
+ "\n",
+ "tune_data = pickled_tune_stuff[\"data\"].to(device)\n",
+ "tune_label = pickled_tune_stuff[\"labels\"].to(device)\n",
+ "tune_padding_mask = (tune_data == PAD_TOKEN).bool().to(device)\n",
+ "tune_dataset = TensorDataset(tune_data, tune_label, tune_padding_mask)\n",
+ "tune_train_dataset, tune_test_dataset = torch.utils.data.random_split(tune_dataset, [.8, .2])\n",
+ "tune_train_loader = DataLoader(tune_train_dataset, batch_size=TUNE_BSZ, shuffle=True)\n",
+ "tune_test_loader = DataLoader(tune_test_dataset, batch_size=TUNE_BSZ, shuffle=True)\n",
+ "\n",
+ "tune_criterion = nn.MSELoss()\n",
+ "tune_optimizer = torch.optim.Adam(model.parameters(), lr=TUNE_LR, weight_decay=TUNE_WD)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "execution_state": "running",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# This has to be in a separate cell for some weird event loop reasons\n",
+ "%matplotlib widget\n",
+ "fig,ax = plt.subplots()\n",
+ "fig.suptitle('MSE vs Epochs')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "execution_state": "running",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "ax.clear()\n",
+ "\n",
+ "tune_train_err = []\n",
+ "tune_test_err = []\n",
+ "\n",
+ "for epoch in range(N_TUNE_EPOCHS):\n",
+ " model.train()\n",
+ " tune_train_loss = 0\n",
+ " for batch_src, batch_labels, batch_padding_mask in tune_train_loader:\n",
+ " optimizer.zero_grad()\n",
+ " output = model(batch_src, batch_padding_mask)\n",
+ " loss = criterion(output.squeeze(1), batch_labels)\n",
+ " tune_train_loss += loss.item()/len(tune_train_loader)\n",
+ " loss.backward()\n",
+ " optimizer.step()\n",
+ "\n",
+ " model.eval()\n",
+ " tune_test_loss = 0\n",
+ " with torch.no_grad():\n",
+ " for batch_src, batch_labels, batch_padding_mask in tune_test_loader:\n",
+ " output = model(batch_src, batch_padding_mask)\n",
+ " loss = criterion(output.squeeze(1), batch_labels)\n",
+ " tune_test_loss += loss.item()/len(tune_test_loader)\n",
+ " \n",
+ " tune_test_err.append(tune_test_loss)\n",
+ " tune_train_err.append(tune_train_loss)\n",
+ " ax.plot(tune_train_err, label='Train', color='blue')\n",
+ " ax.plot(tune_test_err, label='Test', color='red')\n",
+ " ax.set_xlabel('Epochs')\n",
+ " ax.set_ylabel('MSE')\n",
+ " fig.canvas.draw()\n",
+ " print(f\"Epoch {epoch + 1}/{NEPOCHS} \\t Train Err: {train_loss:.4f} \\t Test Err: {test_loss:.4f} \\t baseline err: {baseline_error:.4f}\")\n",
+ "\n",
+ " if epoch % 100 == 9:\n",
+ " torch.save(model.state_dict(), f\"tune_model_weights_{epoch}.pth\")"
+ ]
+ },
+ {
"cell_type": "markdown",
"metadata": {
"id": "JtTLXn4zC1z_"
@@ -709,7 +948,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.10.12"
+ "version": "3.12.7"
}
},
"nbformat": 4,