1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
|
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": [],
"gpuType": "T4",
"collapsed_sections": [
"LPphBnKR-aWF",
"gKt-yIpDebF1"
]
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
},
"accelerator": "GPU"
},
"cells": [
{
"cell_type": "markdown",
"source": [
"# Step 0: Imports"
],
"metadata": {
"id": "LPphBnKR-aWF"
}
},
{
"cell_type": "code",
"source": [
"# imports\n",
"import numpy as np\n",
"from collections import deque\n",
"import pickle\n",
"from tqdm import tqdm\n",
"np.random.seed(42)\n",
"\n",
"import torch\n",
"import torch.nn as nn\n",
"import pickle\n",
"from math import sqrt\n",
"from torch.utils.data import DataLoader, TensorDataset\n",
"import matplotlib.pyplot as plt\n",
"torch.manual_seed(42)\n",
"\n",
"print(\"imports complete\")"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "ge5QvElvhCOw",
"outputId": "8d2f46b5-22c3-42a7-ecef-ce014d7ec2c9"
},
"execution_count": 97,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"imports complete\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"# Step 1: Generate synthetic data"
],
"metadata": {
"id": "gKt-yIpDebF1"
}
},
{
"cell_type": "code",
"execution_count": 98,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "1IbzGIWseK3E",
"outputId": "835a0467-e1d3-414b-99cb-b8a1b368dd86"
},
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"100%|██████████| 55/55 [00:00<00:00, 100.02it/s]\n"
]
}
],
"source": [
"PAD_TOKEN = 0\n",
"MAX_VTXS = 63\n",
"# vertices are labelled 1,2,...,63\n",
"# we also have a padding token which is 0.\n",
"\n",
"INF = MAX_VTXS # represents unreachability\n",
"SEQ_LEN = 128\n",
"\n",
"# original task data\n",
"NTRAIN1 = 10000\n",
"# the data will be edge lists\n",
"# like this: [1 3 1 5 2 4 0 0 0 0]\n",
"# this represents edges (1,3), (1,5) (2,4)\n",
"# (the zeros are just padding tokens)\n",
"\n",
"# the label is the shortest distance from vtx 1 to vtx 2\n",
"# or \"INF\" if no path exists\n",
"\n",
"# fine tuning data\n",
"NTRAIN2 = 2000\n",
"# I haven't totally figured out how to do the fine tuning yet.\n",
"# So don't worry about this yet.\n",
"\n",
"def random_graph(n):\n",
" assert n >= 4\n",
" edge_list = []\n",
" adjacencies = [set() for _ in range(n+1)]\n",
"\n",
" indices = np.random.randint(n, size=(2*n))+1\n",
" for i in range(0, len(indices), 2):\n",
" u = indices[i]\n",
" v = indices[i + 1]\n",
" if u != v:\n",
" edge_list += [u,v]\n",
" adjacencies[u].add(v)\n",
" adjacencies[v].add(u)\n",
"\n",
" edge_list += [PAD_TOKEN]*(SEQ_LEN-len(edge_list))\n",
" return edge_list, adjacencies\n",
"\n",
"\"\"\"\n",
"input: G, represented as an adjacency list\n",
"output: [INF]+[d(1,i) for i in range(n)] if target=None\n",
"if target is set to some value, then we instead just output that specific distance\n",
"\"\"\"\n",
"def SSSP(G, target=None):\n",
" dist = [INF for _ in G]\n",
" dist[1] = 0\n",
" frontier = deque()\n",
" frontier.append(1)\n",
" while len(frontier) > 0:\n",
" vtx = frontier.popleft()\n",
" for x in G[vtx]:\n",
" if dist[x] == INF:\n",
" dist[x] = 1 + dist[vtx]\n",
" frontier.append(x)\n",
" if x == target:\n",
" return dist[target]\n",
" if target is not None:\n",
" return dist[target]\n",
" else:\n",
" return dist\n",
"\n",
"graphs1 = []\n",
"distance1 = []\n",
"\n",
"graphs2 = []\n",
"distances2 = []\n",
"\n",
"for n in tqdm(range(8, MAX_VTXS)):\n",
" for _ in range(NTRAIN1//MAX_VTXS):\n",
" edge_list, adj_list = random_graph(n)\n",
" dist = SSSP(adj_list, target=2)\n",
"\n",
" graphs1.append(edge_list)\n",
" distance1.append(dist)\n",
"\n",
"for n in range(8, MAX_VTXS//4):\n",
" for _ in range(NTRAIN2//MAX_VTXS):\n",
" edge_list, adj_list = random_graph(n)\n",
" distances = SSSP(adj_list)\n",
" graphs2.append(edge_list)\n",
" distances2.append(distances)\n",
"\n",
"split1 = int(len(graphs1)*3/4)\n",
"split2 = int(len(graphs2)*3/4)\n",
"\n",
"data = {\n",
" \"train1-data\": graphs1[:split1],\n",
" \"train1-labels\": distance1[:split1],\n",
" \"test1-data\": graphs1[split1:],\n",
" \"test1-labels\": distance1[split1:],\n",
" \"train2-data\": graphs2[:split2],\n",
" \"train2-labels\": distances2[:split2],\n",
" \"test2-data\": graphs2[split2:],\n",
" \"test2-labels\": distances2[split2:]\n",
"}\n",
"\n",
"with open('data.pkl', 'wb') as file:\n",
" pickle.dump(data, file)\n",
"\n"
]
},
{
"cell_type": "markdown",
"source": [
"# Step 2: Define Transformer Model"
],
"metadata": {
"id": "Q3Cg_8UQep8g"
}
},
{
"cell_type": "code",
"source": [
"class TransformerModel(nn.Module):\n",
" def __init__(self, input_dim, model_dim, output_dim, num_heads, num_layers, seq_len, device, dropout=0.1):\n",
" super().__init__()\n",
" self.embedding = nn.Embedding(input_dim, model_dim)\n",
" self.model_dim = model_dim\n",
" self.seq_len = seq_len\n",
" self.device = device\n",
"\n",
" encoder_layers = nn.TransformerEncoderLayer(d_model=model_dim, nhead=num_heads, dropout=dropout, batch_first=True)\n",
" self.transformer_encoder = nn.TransformerEncoder(encoder_layers, num_layers)\n",
" self.fc_out = nn.Linear(model_dim*seq_len, output_dim)\n",
"\n",
" def positional_encoding(self, batch_size):\n",
" pos_encoding = torch.arange(self.seq_len, device=self.device).unsqueeze(1) % 2\n",
" pos_encoding = pos_encoding.float().unsqueeze(0).repeat(batch_size, 1, 1)\n",
" return pos_encoding\n",
"\n",
" def forward(self, src, key_padding_mask):\n",
" batch_size, src_len = src.size(0), src.size(1)\n",
" src_pos = self.positional_encoding(batch_size)\n",
" embed = self.embedding(src)\n",
" src = embed * sqrt(self.model_dim) + src_pos\n",
"\n",
" output = self.transformer_encoder(src, None, src_key_padding_mask=key_padding_mask)\n",
" flat_output = torch.flatten(output, start_dim=1, end_dim=2)\n",
" output = self.fc_out(flat_output)\n",
" return output\n"
],
"metadata": {
"id": "tLOWhg_CeWzH"
},
"execution_count": 99,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"# Step 3: Load Data"
],
"metadata": {
"id": "bpIeg86S-hBb"
}
},
{
"cell_type": "code",
"source": [
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
"assert device.type == 'cuda', \"CUDA is not available. Please check your GPU setup.\"\n",
"\n",
"# PARAMS\n",
"VOCAB_SIZE = 64 # one more than the max number of vertices\n",
"model_dim = 512 # Dimension of model (embedding and transformer)\n",
"num_epochs = 4\n",
"batch_size = 32\n",
"learning_rate = 0.001\n",
"max_seq_len = 128\n",
"num_heads = 8\n",
"num_layers = 6\n",
"PAD_TOKEN = 0\n",
"model = TransformerModel(input_dim=VOCAB_SIZE, model_dim=model_dim,\n",
" output_dim=VOCAB_SIZE, num_heads=num_heads,\n",
" num_layers=num_layers, seq_len=max_seq_len,\n",
" device=device).to(device)\n",
"\n",
"with open(\"data.pkl\", \"rb\") as f:\n",
" data = pickle.load(f)\n",
"\n",
"train_data1 = data[\"train1-data\"]\n",
"train_label1 = data[\"train1-labels\"]\n",
"train_data_tensor = torch.tensor(train_data1, dtype=torch.long, device=device)\n",
"train_label_tensor = torch.tensor(train_label1, dtype=torch.long, device=device)\n",
"train_padding_mask = (train_data_tensor != PAD_TOKEN).bool().to(device)\n",
"train_dataset = TensorDataset(train_data_tensor, train_label_tensor, train_padding_mask)\n",
"train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)\n",
"\n",
"test_data1 = data[\"test1-data\"]\n",
"test_label1 = data[\"test1-labels\"]\n",
"test_data_tensor = torch.tensor(test_data1, dtype=torch.long, device=device)\n",
"test_label_tensor = torch.tensor(test_label1, dtype=torch.long, device=device)\n",
"test_padding_mask = (test_data_tensor != PAD_TOKEN).bool().to(device)\n",
"test_dataset = TensorDataset(test_data_tensor, test_label_tensor, test_padding_mask)\n",
"test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=True)\n",
"\n",
"criterion = nn.CrossEntropyLoss()\n",
"optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)\n",
"\n",
"train_accuracy = []\n",
"test_accuracy = []"
],
"metadata": {
"id": "kWXvJRDYgFVP"
},
"execution_count": 100,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"# Step 4: Train the Model for the first task"
],
"metadata": {
"id": "f8Zn33m7CxL5"
}
},
{
"cell_type": "code",
"source": [
"for epoch in range(num_epochs):\n",
" model.train() # set to training mode\n",
" epoch_loss = 0\n",
" correct_train = 0\n",
" total_train = 0\n",
"\n",
" for batch_src, batch_labels, batch_padding_mask in train_loader:\n",
" optimizer.zero_grad()\n",
" output = model(batch_src, batch_padding_mask)\n",
"\n",
" _, predicted = torch.max(output, 1)\n",
" correct_train += (predicted == batch_labels).sum().item()\n",
" total_train += batch_labels.size(0)\n",
"\n",
" loss = criterion(output, batch_labels)\n",
" epoch_loss += loss.item()\n",
" loss.backward()\n",
" optimizer.step()\n",
"\n",
" # Evaluate performance\n",
" model.eval()\n",
" correct_test = 0\n",
" total_test = 0\n",
"\n",
" with torch.no_grad():\n",
" for batch_src, batch_labels, batch_padding_mask in test_loader:\n",
" output = model(batch_src, batch_padding_mask)\n",
"\n",
" _, predicted = torch.max(output, 1)\n",
" correct_test += (predicted == batch_labels).sum().item()\n",
" total_test += batch_labels.size(0)\n",
"\n",
" epoch_test_acc = correct_test / total_test\n",
" epoch_train_acc = correct_train / total_train\n",
" test_accuracy.append(epoch_test_acc)\n",
" train_accuracy.append(epoch_train_acc)\n",
" print(f\"Epoch {epoch + 1}/{num_epochs} \\t Train Accuracy: {epoch_train_acc:.4f} \\t Test Accuracy: {epoch_test_acc:.4f}\")\n",
"\n",
"plt.figure(figsize=(10, 5))\n",
"plt.plot(test_accuracy, label='Test', color='red')\n",
"plt.plot(train_accuracy, label='Train', color='red')\n",
"plt.title('Accuracy vs Epochs')\n",
"plt.xlabel('Epochs'); plt.ylabel('Accuracy')\n",
"plt.legend(); plt.grid()\n",
"plt.show()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "pvTfzGmCeXU4",
"outputId": "5231507f-7a52-4eb7-893a-c49ca93b8baf"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Epoch 1/4 \t Train Accuracy: 0.2067 \t Test Accuracy: 0.3838\n",
"Epoch 2/4 \t Train Accuracy: 0.2457 \t Test Accuracy: 0.3838\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"# Step 5: Fine Tune"
],
"metadata": {
"id": "LC6Xv3YfC0Rm"
}
},
{
"cell_type": "markdown",
"source": [
"# Step 6: Test generalization"
],
"metadata": {
"id": "JtTLXn4zC1z_"
}
}
]
}
|