aboutsummaryrefslogtreecommitdiff
path: root/music.nim
diff options
context:
space:
mode:
Diffstat (limited to 'music.nim')
-rw-r--r--music.nim482
1 files changed, 254 insertions, 228 deletions
diff --git a/music.nim b/music.nim
index 0ad3e3f..15a2fc3 100644
--- a/music.nim
+++ b/music.nim
@@ -1,250 +1,276 @@
-import musiclib
+import musiclib, std/math
# Number of times to sample each second
let bitrate = 44100
+func osc_piano*(f, t: float): float =
+ ## Returns the intensity of a tone of frequency f sampled at time t
+ ## t starts at 0 (note start)
+ # https://dsp.stackexchange.com/questions/46598/mathematical-equation-for-the-sound-wave-that-a-piano-makes
+ # https://youtu.be/ogFAHvYatWs?t=254
+ # return int(2**13*(1+square(t, 440*2**(math.floor(5*t)/12))))
+ # Y = sum([math.sin(2 * i * math.pi * t * f) * math.exp(-0.0004 * 2 * math.pi * t * f) / 2**i for i in range(1, 4)])
+ # Y += Y * Y * Y
+ # Y *= 1 + 16 * t * math.exp(-6 * t)
+ let w = 2 * PI * f
+ var Y = 0.6 * math.sin(w * t) * math.exp(-0.001 * w * t)
+ Y += 0.2 * math.sin(2 * w * t) * math.exp(-0.001 * w * t)
+ Y += 0.05 * math.sin(3 * w * t) * math.exp(-0.001 * w * t)
+ Y += Y * Y * Y
+ Y *= 1 + 16 * t * math.exp(-6 * t)
+ Y
+
+func freq*(octave, step: float): float =
+ ## Returns the frequency of a note
+ 55 * pow(2, (octave + step / 12 - 1))
+
+func p*(len, octave, step, vol: float = 1): Note =
+ ## Note helper constructor
+ let osc: OscFn = osc_piano
+ (len, freq(octave, step), vol, osc)
+
let intro = [
- n(1,3,3),
- n(1,3,7),
- n(1,3,10),
- n(6,4,2),
-
- n(1,3,1),
- n(1,3,5),
- n(1,3,8),
- n(3,4,0),
-
- n(1,2,11),
- n(1,3,3),
- n(1,3,6),
- n(3,3,10),
-
- n(1,2,8),
- n(1,3,0),
- n(1,3,3),
- n(8,3,7),
+ p(1,3,3),
+ p(1,3,7),
+ p(1,3,10),
+ p(6,4,2),
+
+ p(1,3,1),
+ p(1,3,5),
+ p(1,3,8),
+ p(3,4,0),
+
+ p(1,2,11),
+ p(1,3,3),
+ p(1,3,6),
+ p(3,3,10),
+
+ p(1,2,8),
+ p(1,3,0),
+ p(1,3,3),
+ p(8,3,7),
]
let melody = [
- n(1,3,3),
- n(1,3,7),
- n(1,3,10),
- n(1,4,2),
- n(1,4,3),
- n(1,4,7),
- n(2,4,8),
-
- n(1,3,1),
- n(1,3,5),
- n(1,3,8),
- n(1,4,0),
- n(1,4,1),
- n(1,4,5),
- n(2,4,8),
-
- n(1,3,3),
- n(1,3,7),
- n(1,3,10),
- n(1,4,2),
- n(1,4,3),
- n(1,4,10),
- n(2,4,3),
-
- n(1,3,1),
- n(1,3,5),
- n(1,3,8),
- n(1,4,0),
- n(1,4,10),
- n(1,4,8),
- n(2,4,10),
-
-
- n(1,3,3),
- n(1,3,7),
- n(1,3,10),
- n(1,4,2),
- n(1,4,3),
- n(1,4,7),
- n(2,4,8),
-
- n(1,3,1),
- n(1,3,5),
- n(1,3,8),
- n(1,4,0),
- n(1,4,1),
- n(1,4,5),
- n(2,4,1),
-
- n(1,3,3),
- n(1,3,7),
- n(1,3,10),
- n(1,4,2),
- n(1,4,3),
- n(1,4,10),
- n(1,4,8),
- n(1,4,7),
-
- n(1,3,1),
- n(1,3,5),
- n(1,3,8),
- n(1,4,0),
- n(1,4,10),
- n(1,4,8),
- n(2,4,10),
+ p(1,3,3),
+ p(1,3,7),
+ p(1,3,10),
+ p(1,4,2),
+ p(1,4,3),
+ p(1,4,7),
+ p(2,4,8),
+
+ p(1,3,1),
+ p(1,3,5),
+ p(1,3,8),
+ p(1,4,0),
+ p(1,4,1),
+ p(1,4,5),
+ p(2,4,8),
+
+ p(1,3,3),
+ p(1,3,7),
+ p(1,3,10),
+ p(1,4,2),
+ p(1,4,3),
+ p(1,4,10),
+ p(2,4,3),
+
+ p(1,3,1),
+ p(1,3,5),
+ p(1,3,8),
+ p(1,4,0),
+ p(1,4,10),
+ p(1,4,8),
+ p(2,4,10),
+
+
+ p(1,3,3),
+ p(1,3,7),
+ p(1,3,10),
+ p(1,4,2),
+ p(1,4,3),
+ p(1,4,7),
+ p(2,4,8),
+
+ p(1,3,1),
+ p(1,3,5),
+ p(1,3,8),
+ p(1,4,0),
+ p(1,4,1),
+ p(1,4,5),
+ p(2,4,1),
+
+ p(1,3,3),
+ p(1,3,7),
+ p(1,3,10),
+ p(1,4,2),
+ p(1,4,3),
+ p(1,4,10),
+ p(1,4,8),
+ p(1,4,7),
+
+ p(1,3,1),
+ p(1,3,5),
+ p(1,3,8),
+ p(1,4,0),
+ p(1,4,10),
+ p(1,4,8),
+ p(2,4,10),
]
let bass = [
- n(1,1,3),
- n(1,1,10),
- n(1,1,1),
- n(1,1,8),
- n(1,1,3),
- n(1,2,3),
- n(1,1,1),
- n(1,1,10),
+ p(1,1,3),
+ p(1,1,10),
+ p(1,1,1),
+ p(1,1,8),
+ p(1,1,3),
+ p(1,2,3),
+ p(1,1,1),
+ p(1,1,10),
]
let melody2 = [
- n(1,0,0),
- n(1,5,10),
- n(1,5,8),
- n(1,5,7),
- n(1,5,8),
- n(3,5,7,2),
-
- n(1,5,3),
- n(1,4,10),
- n(6,5,1,2),
-
- n(1/2,5,0,2),
- n(1/2,5,1,2),
- n(3,5,3,2),
- n(1/2,5,10,2),
- n(7/2,5,3,2),
-
- n(8,0,0),
-
- n(1,0,0),
- n(1,5,3),
- n(1,5,10),
- n(1,5,10),
- n(4/3,5,10),
- n(4/3,5,8),
- n(4/3,5,7),
-
- n(1,0,0),
- n(1,5,1),
- n(1,5,8),
- n(1,5,8),
- n(4/3,5,8),
- n(4/3,5,8),
- n(4/3,5,10),
-
- n(8,0,0),
-
- n(1,0,0),
- n(5,5,3,2),
- n(2,5,10,2),
+ p(1,0,0),
+ p(1,5,10),
+ p(1,5,8),
+ p(1,5,7),
+ p(1,5,8),
+ p(3,5,7,2),
+
+ p(1,5,3),
+ p(1,4,10),
+ p(6,5,1,2),
+
+ p(1/2,5,0,2),
+ p(1/2,5,1,2),
+ p(3,5,3,2),
+ p(1/2,5,10,2),
+ p(7/2,5,3,2),
+
+ p(8,0,0),
+
+ p(1,0,0),
+ p(1,5,3),
+ p(1,5,10),
+ p(1,5,10),
+ p(4/3,5,10),
+ p(4/3,5,8),
+ p(4/3,5,7),
+
+ p(1,0,0),
+ p(1,5,1),
+ p(1,5,8),
+ p(1,5,8),
+ p(4/3,5,8),
+ p(4/3,5,8),
+ p(4/3,5,10),
+
+ p(8,0,0),
+
+ p(1,0,0),
+ p(5,5,3,2),
+ p(2,5,10,2),
]
let melody3 = [
- n(1,0,0),
- n(1,5,10),
- n(1/2,5,8,2/3),
- n(1/2,5,7,2/3),
- n(1/4,5,8,1/2),
- n(1/4,5,7,1/2),
- n(1/4,5,8,1/2),
- n(1/4,5,7,1/2),
- n(1,5,8),
- n(3,5,7,2),
-
- n(1,5,3),
- n(1,4,10),
- n(1,5,1),
- n(5,5,7,2),
-
- n(1/2,5,7),
- n(1/2,5,10),
- n(1/4,5,7),
- n(1/4,5,10),
- n(1/4,5,7),
- n(1/4,5,10),
- n(1,6,3),
- n(2,5,3,2),
- n(1/2,6,3),
- n(5/2,5,3,2),
-
- n(1/2,5,10),
- n(1/2,5,8),
- n(1/2,5,7),
- n(1/2,5,8),
- n(1/2,5,7),
- n(1/2,5,3),
- n(1/2,4,10),
- n(1/2,5,1),
- n(1/2,5,0),
- n(1/2,4,10),
- n(1/2,4,8),
- n(1/2,4,10),
- n(1/2,5,3),
- n(1/2,5,7),
- n(1/2,5,3),
- n(1/2,5,10),
-
- n(4/3,5,7),
- n(4/3,6,3),
- n(4/3,6,3),
- n(4/3,6,2),
- n(4/3,5,10),
- n(4/3,5,7),
-
- n(3,5,5),
- n(2,5,7),
- n(2,5,8),
- n(1,6,1),
-
- n(1,5,3),
- n(1,5,5),
- n(2,5,7),
- n(1,5,3),
- n(1,5,8),
- n(2,5,10),
-
- n(3/2,6,0),
- n(3/2,6,1),
- n(5,6,3,2),
+ p(1,0,0),
+ p(1,5,10),
+ p(1/2,5,8,2/3),
+ p(1/2,5,7,2/3),
+ p(1/4,5,8,1/2),
+ p(1/4,5,7,1/2),
+ p(1/4,5,8,1/2),
+ p(1/4,5,7,1/2),
+ p(1,5,8),
+ p(3,5,7,2),
+
+ p(1,5,3),
+ p(1,4,10),
+ p(1,5,1),
+ p(5,5,7,2),
+
+ p(1/2,5,7),
+ p(1/2,5,10),
+ p(1/4,5,7),
+ p(1/4,5,10),
+ p(1/4,5,7),
+ p(1/4,5,10),
+ p(1,6,3),
+ p(2,5,3,2),
+ p(1/2,6,3),
+ p(5/2,5,3,2),
+
+ p(1/2,5,10),
+ p(1/2,5,8),
+ p(1/2,5,7),
+ p(1/2,5,8),
+ p(1/2,5,7),
+ p(1/2,5,3),
+ p(1/2,4,10),
+ p(1/2,5,1),
+ p(1/2,5,0),
+ p(1/2,4,10),
+ p(1/2,4,8),
+ p(1/2,4,10),
+ p(1/2,5,3),
+ p(1/2,5,7),
+ p(1/2,5,3),
+ p(1/2,5,10),
+
+ p(4/3,5,7),
+ p(4/3,6,3),
+ p(4/3,6,3),
+ p(4/3,6,2),
+ p(4/3,5,10),
+ p(4/3,5,7),
+
+ p(3,5,5),
+ p(2,5,7),
+ p(2,5,8),
+ p(1,6,1),
+
+ p(1,5,3),
+ p(1,5,5),
+ p(2,5,7),
+ p(1,5,3),
+ p(1,5,8),
+ p(2,5,10),
+
+ p(3/2,6,0),
+ p(3/2,6,1),
+ p(5,6,3,2),
]
let outro = [
- n(1,3,3),
- n(1,3,7),
- n(1,3,10),
- n(1,4,2),
- n(1,4,3),
- n(1,4,7),
- n(2,4,8),
-
- n(1,3,1),
- n(1,3,5),
- n(1,3,8),
- n(1,4,0),
- n(1,4,1),
- n(1,4,5),
- n(2,4,8),
-
- n(1,2,11),
- n(1,3,3),
- n(1,3,6),
- n(1,3,10),
- n(1.5,3,11),
- n(1.5,4,3),
- n(3,4,8),
-
- n(1.5,2,8),
- n(1.5,3,0),
- n(2,3,3),
- n(16,3,7,2),
+ p(1,3,3),
+ p(1,3,7),
+ p(1,3,10),
+ p(1,4,2),
+ p(1,4,3),
+ p(1,4,7),
+ p(2,4,8),
+
+ p(1,3,1),
+ p(1,3,5),
+ p(1,3,8),
+ p(1,4,0),
+ p(1,4,1),
+ p(1,4,5),
+ p(2,4,8),
+
+ p(1,2,11),
+ p(1,3,3),
+ p(1,3,6),
+ p(1,3,10),
+ p(1.5,3,11),
+ p(1.5,4,3),
+ p(3,4,8),
+
+ p(1.5,2,8),
+ p(1.5,3,0),
+ p(2,3,3),
+ p(16,3,7,2),
]
from std/algorithm import sort
@@ -265,7 +291,7 @@ music.process(melody3, 56, 4)
music.process(bass, 56, gain=1.5)
music.process(bass, 64, gain=1.5)
music.process(outro, 72, 4)
-music.sort()
+music.sortByStart()
# Print out music encoded in s16 to standard output
for i in (0 * bitrate ..< 84 * bitrate):