aboutsummaryrefslogtreecommitdiff
path: root/display_animation_tkinter.py
diff options
context:
space:
mode:
Diffstat (limited to 'display_animation_tkinter.py')
-rw-r--r--display_animation_tkinter.py151
1 files changed, 0 insertions, 151 deletions
diff --git a/display_animation_tkinter.py b/display_animation_tkinter.py
deleted file mode 100644
index f26202c..0000000
--- a/display_animation_tkinter.py
+++ /dev/null
@@ -1,151 +0,0 @@
-import argparse
-import json
-import math
-import time
-import tkinter as tk
-
-import numpy as np
-
-from utils import rgb_to_hex
-
-
-def parse_args():
- return {
- "cell_size": 8, # in pixels
- "num_cells_w": 100, # TODO: w/h or r/c?
- "num_cells_h": 100,
- "colors_path": "configs/colors_64_v0.json",
- "corners_path": "configs/corners_hollow4x4_v0.json",
- "frame_delay": 1000 // 15, # time b/w frames, in millis
- }
-
-
-def seq_to_frames(bin_seq: np.ndarray, args: dict) -> np.ndarray: # TODO: Namespace
- """
- Converts a binary sequence to an array of frames.
- TODO: doc, expecting size of exactly one frame in the future?
-
- np.packbits seems relevant but limited to 8 bits
-
- Args:
- bin_seq: a 1D array of binary values.
- args: config parameters
-
- Returns:
- array of shape (num_frames, args["num_cells_h"], args["num_cells_w"]), where each element is
- a hex string for the color of that cell
- """
- bin_seq = bin_seq.copy() # so that we don't mutate bin_seq
-
- with open(args["colors_path"], "r") as f:
- colors = json.load(f)
-
- with open(args["corners_path"], "r") as f:
- corners = json.load(f)
-
- assert len(corners["corner_colors"]) == 4, "Hardcoded for 4 corners"
- corner_width = corners["corner_width"]
- corner_height = corners["corner_height"]
-
- num_colors = len(colors)
- bits_per_cell = int(math.log2(num_colors))
- assert 2**bits_per_cell == num_colors, "Assumed the number of colors is a power of 2."
-
- # bits_per_frame = bits_per_cell * args["num_cells_w"] * args["num_cells_h"]
- # num_frames = int(math.ceil(len(bin_seq) / bits_per_frame))
- # bin_seq.resize(bits_per_frame * num_frames)
- # # frames_bits = bin_seq.reshape(num_frames, args["num_cells_h"], args["num_cells_w"], bits_per_cell)
- #
- # pows = 2 ** np.arange(bits_per_cell)
- # frames_vals = (frames_bits * pows).sum(axis=-1) # low to high bit order
-
- cells_per_frame = args["num_cells_w"] * args["num_cells_h"] - 4 * corner_width * corner_height
- bits_per_frame = bits_per_cell * cells_per_frame
- num_frames = int(math.ceil(len(bin_seq) / bits_per_frame))
- bin_seq.resize(bits_per_frame * num_frames)
- frames_bits = bin_seq.reshape(num_frames, cells_per_frame, bits_per_cell)
- pows = 2 ** np.arange(bits_per_cell)
- frames_vals = (frames_bits * pows).sum(axis=-1) # low to high bit order
-
- # Efficiently map frame_vals to the corresponding hex colors (https://stackoverflow.com/a/55950051)
- color_mapping_arr = np.empty(num_colors, dtype="<U7")
- for i in range(num_colors):
- color_mapping_arr[i] = rgb_to_hex(colors[str(i)]) # JSON keys stored as str
-
- frames_colors = color_mapping_arr[frames_vals]
-
- num_top_cells = (args["num_cells_w"] - 2 * corner_width) * corner_height # TODO: explain
- top_cells = frames_colors[:, :num_top_cells].reshape(num_frames, corner_height, -1)
- center_cells = frames_colors[:, num_top_cells:-num_top_cells].reshape(num_frames, -1, args["num_cells_w"])
- bottom_cells = frames_colors[:, -num_top_cells:].reshape(num_frames, corner_height, -1)
-
- corners_numpy_dict = {key: np.broadcast_to(val, (num_frames, corner_height, corner_width))
- for key, val in corners["corner_colors"].items()}
- top_rows = np.concatenate([corners_numpy_dict["0"], top_cells, corners_numpy_dict["1"]], axis=2)
- bottom_rows = np.concatenate([corners_numpy_dict["2"], bottom_cells, corners_numpy_dict["3"]], axis=2)
-
- return np.concatenate([top_rows, center_cells, bottom_rows], axis=1)
-
-
-class AnimatedFrames:
- def __init__(self, frames: np.ndarray, args: dict):
- self.frames = frames
- self.args = args
- self.width_pixels = args["cell_size"] * args["num_cells_w"]
- self.height_pixels = args["cell_size"] * args["num_cells_h"]
-
- self.root = tk.Tk()
- self.root.columnconfigure(0, weight=1)
- self.root.rowconfigure(0, weight=1)
- self.canvas = tk.Canvas(self.root, width=self.width_pixels, height=self.height_pixels,
- borderwidth=0, highlightthickness=0) # https://stackoverflow.com/a/63220348
- self.canvas.grid(column=0, row=0)
-
- # We will create each cell (rectangle) now, and then update their colors in different frames
- self.inds_to_id = dict() # map from (row_ind, col_ind) to the id of the rectangle at that cell position
- for i in range(args["num_cells_h"]):
- for j in range(args["num_cells_w"]):
- self.inds_to_id[(i, j)] = self.canvas.create_rectangle(
- i * args["cell_size"], j * args["cell_size"], (i + 1) * args["cell_size"],
- (j + 1) * args["cell_size"], width=0
- )
-
- self.frame_ind = 0 # the index in `self.frames` of the next frame to display
- self.start_time = None
- self._debug_text_id = self.canvas.create_text((args["num_cells_w"] - 2) * args["cell_size"], (args["num_cells_h"] - 2) * args["cell_size"])
-
- def display_frame(self):
- func_start_time = time.time_ns()
- for inds_tuple, color_hex in np.ndenumerate(self.frames[self.frame_ind % len(self.frames)]):
- self.canvas.itemconfigure(self.inds_to_id[inds_tuple], fill=color_hex)
-
- self.canvas.itemconfigure(self._debug_text_id, text=self.frame_ind)
- self.frame_ind += 1
-
- adjusted_delay = round((self.start_time + self.args["frame_delay"] * int(1e6)
- * self.frame_ind - func_start_time) / 1e6)
- assert adjusted_delay > 1, adjusted_delay # o/w we lagged too far behind, assuming 1 ms for this instruction
- self.canvas.after(adjusted_delay, self.display_frame) # TODO: check delay is exact
- # TODO: set self time and just sleep until then
-
- def animate(self):
- epilepsy_warning_id = self.canvas.create_text(self.width_pixels / 2, self.height_pixels / 2,
- text="Warning: Epilepsy")
-
- def delete_and_animate():
- self.canvas.delete(epilepsy_warning_id)
- self.start_time = time.time_ns()
- self.display_frame()
-
- self.canvas.after(5000, delete_and_animate)
- # self.display_frame()
- self.root.mainloop()
-
-
-if __name__ == "__main__":
- args = parse_args()
-
- rand_bin_seq = np.random.randint(2, size=1000000)
- frames = seq_to_frames(rand_bin_seq, args)
-
- AnimatedFrames(frames, args).animate()